Skip to main content

Novel Microbial Immobilization Techniques

  • Chapter
  • First Online:
Novel Food Fermentation Technologies

Part of the book series: Food Engineering Series ((FSES))

Abstract

Immobilization technologies preserve cells (bacteria, yeasts), both starter and probiotics, in food and during the transit through the gastrointestinal tract. Until today, several immobilization methods have been proposed and studied namely extrusion, emulsion, spray drying, and coacervation.

This versatile technology has been used to encapsulate a wide array of products, such as pharmaceuticals, flavors, volatile oils, plant extracts, and enzymes. It has found application in various biotechnological processes such as probiotic encapsulation in food industries, biotransformation and fermentation processes to produce antibiotics, organic acids, enzymes, and alcohols as well as environmental decontamination and bioremediation of wastewater. This chapter reports on the conventional and innovative methods used for microencapsulation of microbial cells along with the most recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elhamid, A. M. (2012). Production of functional Kariesh cheese by microencapsulation of Bifidobacterium adolescentis ATCC15704. Journal of Food Science and Technology, 4, 112–117.

    CAS  Google Scholar 

  • Ahmadi, A., Milani, E., Madadlou, A., Mortazavi, S. A., Mokarram, R. R., & Salarbashi, D. (2014). Synbiotic yogurt-ice cream produced via incorporation of microencapsulated Lactobacillus acidophilus (la-5) and fructooligosaccharide. Journal of Food Science and Technology, 51, 1568–1574.

    Article  CAS  Google Scholar 

  • Amine, K. M., Champagne, C. P., Salmieri, S., St-Gelais, D., Britten, M., & Fustier, P. (2014). Survival of microencapsulated Bifidobacterium longum in Cheddar cheese during production and storage. Food Control, 37, 193–199.

    Article  CAS  Google Scholar 

  • Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18, 240–251.

    Article  CAS  Google Scholar 

  • Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15, 399–409.

    Article  CAS  Google Scholar 

  • Annan, N. T., Borza, A. D., & Hansen, L. T. (2008). Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 41, 184–193.

    Article  CAS  Google Scholar 

  • Baptista, C. M. S. G., Coias, J. M. A., Oliveira, A. C. M., Oliveira, N. M. C., Rocha, J. M. S., Dempsey, M. J., et al. (2006). Natural immobilization of microorganisms for continuous ethanol production. Enzyme and Microbial Technology, 40, 127–131.

    Article  CAS  Google Scholar 

  • Berlanga, T. M., Peinado, R., Millan, C., Mauricio, J. C., & Ortega, J. M. (2004). Influence of blending on the content of different compounds in the biological aging of sherry dry wines. Journal of Agricultural and Food Chemistry, 52, 2577–2581.

    Article  CAS  Google Scholar 

  • Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104, 467–483.

    Article  CAS  Google Scholar 

  • Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18, 184–190.

    Article  CAS  Google Scholar 

  • Chandramouli, V., Kailasapathy, K., Peiris, P., & Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods, 56, 27–35.

    Article  CAS  Google Scholar 

  • Chavarri, M., Maranon, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán Mdel, C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142, 185–189.

    Article  CAS  Google Scholar 

  • Chávez, B. E., & Ladeboer, A. M. (2007). Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technology, 28, 1193–1201.

    Article  Google Scholar 

  • Chen, M., & Mustapha, A. (2012). Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix. Food Microbiology, 30, 68–73.

    Article  Google Scholar 

  • Cheow, W. S., Chang, M. W., & Hadinoto, K. (2010). Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. Journal of Biomedical Nanotechnology, 6, 391–403.

    Article  CAS  Google Scholar 

  • Cheow, W. S., & Hadinoto, K. (2013). Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules, 14, 3214–3222.

    Article  CAS  Google Scholar 

  • Cheow, W. S., Kiew, T. Y., & Hadinoto, K. (2014). Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules. Carbohydrate Polymers, 103, 587–595.

    Article  CAS  Google Scholar 

  • Cook, M. T., Tzortzis, G., Charalampopoulos, D., & Khutoryanskiy, V. V. (2011). Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules, 12, 2834–2840.

    Article  CAS  Google Scholar 

  • Corbo, M. R., Bevilacqua, A., Gallo, M., Speranza, B., & Sinigaglia, M. (2013). Immobilization and microencapsulation of Lactobacillus plantarum: performances and in vivo applications. Innovative Food Science & Emerging Technologies, 18, 196–201.

    Google Scholar 

  • Corona-Hernandez, R., Alvarez-Parrilla, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., de la Rosa, L. A., & Wall-Medrano, A. (2013). Structural stability and viability of microencapsulated probiotic bacteria: A review. Comprehensive Reviews in Food Science and Food Safety, 13, 614–628.

    Article  Google Scholar 

  • Crittenden, R., Weerakkody, R., Sanguansri, L., & Augustin, M. (2006). Synbiotic microcapsules that enhance microbial viability during non-refrigerated storage and gastrointestinal transit. Applied and Environmental Microbiology, 72, 2280–2282.

    Article  CAS  Google Scholar 

  • Cui, J. H., Goh, J. S., Kim, P. H., Choi, S. H., & Lee, B. J. (2000). Survival and stability of bifidobacteria loaded in alginate poly-L-lysine microparticles. International Journal of Pharmaceutics, 210, 51–59.

    Article  CAS  Google Scholar 

  • de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20, 292–302.

    Article  Google Scholar 

  • Doherty, S. B., Gree, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F., & Brodkorb, A. (2010). Efficacy of whey protein gel networks as potential viability-enhancing scaffolds for cell immobilization of Lactobacillus rhamnosus GG. Journal of Microbiological Methods, 80, 231–241.

    Article  CAS  Google Scholar 

  • Doleyres, Y., & Lacroix, C. (2005). Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. International Dairy Journal, 15, 973–988.

    Article  CAS  Google Scholar 

  • Dubey, R., Shami, T. C., & Bhasker Rao, K. U. (2009). Microencapsulation technology and applications. Defence Science Journal, 59, 82–95.

    CAS  Google Scholar 

  • El-Sayed, H. S., Salama, H. H., & El-Sayed, S. M. (2014/2015). Production of symbiotic ice cream. International Journal of Chemical Technology Research, 7, 138–147.

    Google Scholar 

  • Fratianni, F., Cardinale, F., & Russo, I. (2013). Ability of symbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation. doi:10.3109/02652048.2013.871361.

    Google Scholar 

  • Gallo, M., Bevilacqua, A., Speranza, B., Sinigaglia, M., & Corbo, M. R. (2013). Alginate beads and apple pieces as carriers for Saccharomyces cerevisiae var. boulardii, as representative of yeast functional starter cultures. International Journal of Food Science and Technology, 49, 2029–2100.

    Google Scholar 

  • García-Martínez, T., Peinado, R. A., Maestre, O., Moreno, J., & Mauricio, J. C. (2008). Fermentación de mostos con elevado contenido en azúcares mediante bioinmovilización de levaduras. Bull OIV, 81, 559–568.

    Google Scholar 

  • Garcıa-Martınez, T., Peinado, R., Moreno, J., García-García, I., & Mauricio, J. C. (2011). Co-culture of Penicillium chrysogenum and Saccharomyces cerevisiae leading to the immobilisation of yeast. Journal of Chemical Technology & Biotechnology, 86, 812–817.

    Article  Google Scholar 

  • Garcıa-Martınez, T., Puig-Pujol, A., Rafael, A., Moreno, J., & Mauricio, J. C. (2012). Potential use of wine yeasts immobilized on Penicillium chrysogenum for ethanol production. Journal of Chemical Technology & Biotechnology, 87, 351–359.

    Article  Google Scholar 

  • Guerin, D., Vuillemard, J. C., & Subirade, M. (2003). Protection of bifidobacteria encapsulated in polysaccharide–protein gel beads against gastric juice and bile. Journal of Food Protection, 66, 2076–2084.

    CAS  Google Scholar 

  • Hansen, T. L., Allan-Wojtas, P. M., Jin, Y. L., & Paulson, A. T. (2002). Survival of Ca– alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology, 19, 35–45.

    Article  CAS  Google Scholar 

  • Heidebach, T., Forst, P., & Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocolloids, 23, 1670–1677.

    Article  CAS  Google Scholar 

  • Heidebach, T., Forst, P., & Kulozik, U. (2010). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering, 98, 309–316.

    Article  CAS  Google Scholar 

  • Heidebach, T., Forst, P., & Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52, 291–311.

    Article  CAS  Google Scholar 

  • Homayouni, A., Azizi, A., & Ehsani, M. R. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111, 50–55.

    Article  CAS  Google Scholar 

  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their affects on the sensory properties of yogurt. LWT--Food Science and Technology, 39, 1221–1227.

    Article  CAS  Google Scholar 

  • Kandylis, P., Manousi, M. E., Bekatorou, A., & Koutinas, A. A. (2010). Freeze-dried wheat supported biocatalyst for low temperature wine making. LWT--Food Science and Technology, 43, 1485–1493.

    Article  CAS  Google Scholar 

  • Kanmani, P., Kumar, R. S., & Yuvaraj, N. (2011). Cryopreservation and microencapsulation of a probiotic in alginate-chitosan capsules improves survival in simulated gastrointestinal conditions. Biotechnology and Bioprocess Engineering, 16, 1106–1114.

    Article  CAS  Google Scholar 

  • Kiew, T. Y., Cheow, W. S., & Hadinoto, K. (2014). Importance of biofilm age and growth medium on the viability of probiotic capsules containing Lactobacillus rhamnosus GG biofilm. LWT--Food Science and Technology, 59, 956–963.

    Article  CAS  Google Scholar 

  • King, V. E., Huang, H. Y., & Tsen, J. H. (2007). Fermentation of tomato juice by cell immobilized Lactobacillus acidophilus. Mid Taiwan Journal of Medicine, 12, 1–17.

    Google Scholar 

  • Kosseva, M. R. (2011). Immobilization of microbial cells in food fermentation processes. Food and Bioprocess Technology, 4, 1089–1118.

    Article  Google Scholar 

  • Kourkoutas, Y., Bekatorou, A., Banat, I. M., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21, 377–397.

    Article  CAS  Google Scholar 

  • Kourkoutas, Y., Kanellaki, M., & Koutinas, A. (2006). Apple pieces as immobilization support of various microorganisms. LWT--Food Science and Technology, 39, 980–986.

    Article  CAS  Google Scholar 

  • Kourkoutas, Y., Xolias, V., Kallis, M., & Kanellaki, M. (2005). Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochemistry, 40, 411–416.

    Article  CAS  Google Scholar 

  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14, 734–743.

    Article  Google Scholar 

  • Lee, K., & Heo, T. (2000). Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Applied and Environmental Microbiology, 66, 869–873.

    Article  CAS  Google Scholar 

  • Liang, L., Zhang, Y., Zhang, L., Zhu, M. J., Liang, S. Z., & Huang, Y. N. (2008). Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. Journal of Industrial Microbiology & Biotechnology, 35, 1605–1613.

    Article  CAS  Google Scholar 

  • Ma, M., & Liu, Z. L. (2010). Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 87, 829–845.

    Article  CAS  Google Scholar 

  • Mitropoulou, G., Nedovic, V., Goyal, A., & Kourkotos, Y. (2013). Immobilization technologies in probiotic food production. Journal of Nutrition and Metabolism, 2013, 1–15.

    Article  Google Scholar 

  • Muthukumarasamy, P., Allan-Wojtas, P., & Holley, R. A. (2006). Stability of Lactobacillus reuteri in different types of microcapsules. Journal of Food Science, 71, 20–24.

    Article  Google Scholar 

  • Nguyen, D. N., Ton, N. M. N., & Le, V. V. M. (2009). Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ‘adsorption incubation’ method. International Food Research Journal, J16, 59–64.

    Google Scholar 

  • Nualkaekul, S., Cook, M. T., & Khutotyanskiy, V. V. (2013). Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Research International, 53, 304–311.

    Article  CAS  Google Scholar 

  • Nualkaekul, S., Lenton, D., & Cook, M. T. (2012). Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydrate Polymers, 90, 1281–1287.

    Article  CAS  Google Scholar 

  • Ortakci, F., & Sert, S. (2012). Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system. Journal of Dairy Science, 95, 6918–6925.

    Article  CAS  Google Scholar 

  • Peinado, R. A., Mauricio, J. C., & Moreno, J. (2002). Procedimiento de obtencion de biocapsulas de levaduras, biocapsulas así obtenidas y aplicaciones. Patent n. WO2004029240.

    Google Scholar 

  • Peinado, R. A., Moreno, J. J., Maestre, O., & Mauricio, J. C. (2005). Use of a novel immobilization yeast system for winemaking. Biotechnology Letters, 27, 1421–1424.

    Article  CAS  Google Scholar 

  • Peinado, R. A., Moreno, J. J., Villalba, J. M., & Mauricio, J. C. (2006). Yeast biocapsules: A new immobilization method and their applications. Enzyme and Microbial Technology, 40, 79–84.

    Article  CAS  Google Scholar 

  • Pinto, S. S., Fritzen-Freire, C. B., & Munoz, I. B. (2012). Effects of the addition of microencapsulated Bifidobacterium Bb-12 on the properties of frozen yogurt. Journal of Food Engineering, 111, 563–569.

    Article  CAS  Google Scholar 

  • Plessas, S., Bekatorou, A., Koutinas, A. A., Soupioni, M., Banat, I. M., & Marchant, R. (2007). Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresource Technology, 98, 860–865.

    Article  CAS  Google Scholar 

  • Puig-Pujol, A., Bertran, E., García-Martínez, T., & Mauricio, J. C. (2013). Application of a new organic yeast immobilization method for sparkling wine production. American Journal of Enology and Viticulture, 64, 386–394.

    Article  CAS  Google Scholar 

  • Rathore, S., Desai, P. M., Liew, C. V., & Heng, P. W. S. (2013). Microencapsulation of microbial cells. Journal of Food Engineering, 116, 369–381.

    Article  CAS  Google Scholar 

  • Reddy, L. V., Reddy, L. P., Wee, Y. J., & Reddy, O. V. S. (2011). Production and characterization of wine with sugarcane piece immobilized yeast biocatalyst. Food and Bioprocess Technology, 4, 142–148.

    Article  CAS  Google Scholar 

  • Rodrigues, D., Sousa, S., Gomes, A. M., Pintado, M. M., Silve, J. P., Costa, P., et al. (2012). Storage stability of Lactobacillus paracasei as free cells or encapsulated in alginate-based microcapsules in low pH fruit juices. Food and Bioprocess Technology, 2, 2748–2757.

    Article  Google Scholar 

  • Rokka, S., & Rantamaki, P. (2010). Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. European Food Research and Technology, 231, 1–12.

    Article  CAS  Google Scholar 

  • Saarela, M., Virkajarvi, I., & Alakomi, H. L. (2006). Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. International Dairy Journal, 16, 1477–1482.

    Article  CAS  Google Scholar 

  • Santillo, A., Bevilacqua, A., Corbo, M. R., & Albenzio, M. (2014). Functional Pecorino cheese production by using innovative lamb rennet paste. Innovative Food Science & Emerging Technologies, 26, 389–396.

    Article  CAS  Google Scholar 

  • Schoina, V., Terpou, A., Angelika-Ioanna, G., Koutinas, A., Kanellaki, M., & Bosnea, L. (2014). Use of Pistacia terebinthus resin as immobilization support for Lactobacillus casei cells and application in selected dairy products. Journal of Food Science and Technology. doi:10.1007/s13197-014-1627-9.

    Google Scholar 

  • Shoji, A. S., Oliveira, A. C., & Balieiro, J. C. C. (2013). Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food and Bioproducts Processing, 91, 83–88.

    Article  CAS  Google Scholar 

  • Sidira, M., Saxami, G., Dimitrellou, D., Santarmaki, V., Galanis, A., & Kourkoutas, Y. (2013). Monitoring survival of Lactobacillus casei ATCC 393 in probiotic yogurts using an efficient molecular tool. Journal of Dairy Science, 96, 3369–3377.

    Article  CAS  Google Scholar 

  • Soodbakhsh, S., Gheisari, H. R., & Aminlari, M. (2012). Viability of encapsulated Lactobacillus casei and Bifidobacterium lactis in symbiotic frozen yogurt and their survival under in vitro simulated gastrointestinal conditions. International Journal of Probiotics and Prebiotics, 7, 121–128.

    Google Scholar 

  • Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology, 109, 13–24.

    CAS  Google Scholar 

  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62, 47–55.

    Article  CAS  Google Scholar 

  • Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61, 17–25.

    Article  CAS  Google Scholar 

  • Tsakiris, A., Kandylis, P., Bekatorou, A., Kourkoutas, Y., & Koutinas, A. A. (2010). Dry red wine making using yeast immobilized on cork pieces. Applied Biochemistry and Biotechnology, 196, 1316–1326.

    Article  Google Scholar 

  • Wandrey, C., Bartkowiak, A., & Harding, S. E. (2010). Materials for encapsulation. In N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation technologies for food active ingredients and food processing (pp. 31–100). New York: Springer.

    Chapter  Google Scholar 

  • Yang, Y., Hu, H., Wang, G., Li, Z., Wang, B., & Jia, X. (2011). Removal of malachite green from aqueous solution by immobilized Pseudomonas sp. DY1 with Aspergillus oryzae. International Biodeterioration & Biodegradation, 65, 429–434.

    Article  CAS  Google Scholar 

  • Ying, D. Y., Phoon, M. C., & Sanguansri, L. (2010). Microencapsulated Lactobacillus rhamnosus GG powders: Relationship of powder physical properties to probiotic survival during storage. Journal of Food Science, 15, E588–E595.

    Article  Google Scholar 

  • Ying, D. Y., Schwander, S., Weerakkody, R., Sanguansri, L., Gantenbein-Demarchi, C., & Augustin, M. A. (2013). Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. Journal of Functional Foods, 5, 98–105.

    Article  CAS  Google Scholar 

  • Ziar, H., Gerard, P., & Riazi, A. (2012). Calcium alginate-resistant starch mixed gel improved the survival of Bifidobacterium animalis subsp. lactis Bb 12 and Lactobacillus rhamnosus LBRE-LSAS in yogurt and simulated gastrointestinal conditions. International Journal of Food Science and Technology, 47, 1421–1429.

    Article  CAS  Google Scholar 

  • Zorea, Y. (2011). Heat resistant probiotic compositions and healthy food comprising them. US Patent 0008493 A1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallo, M., Speranza, B., Corbo, M.R., Sinigaglia, M., Bevilacqua, A. (2016). Novel Microbial Immobilization Techniques. In: Ojha, K., Tiwari, B. (eds) Novel Food Fermentation Technologies. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42457-6_3

Download citation

Publish with us

Policies and ethics