Skip to main content

Novel Preservation Techniques for Microbial Cultures

  • Chapter
  • First Online:
Novel Food Fermentation Technologies

Part of the book series: Food Engineering Series ((FSES))

Abstract

Exploiting full microbial capacities constitutes one of the challenges ahead of fermentation technology. Microbial preservation undoubtedly plays a key role in ensuring maximum production outputs while displaying full structural properties during any fermentative upstream approach. Over the past years, novel techniques have emerged as an alternative to conventional preservation methodologies for maintaining the cellular properties during long-term storage. This chapter addresses the recent advances in the preservation of microbial cultures, highlighting the relevance of emerging methods on maintaining the cellular viability. The key relationship between the cellular fitness and how novel preservation methods can shield the microbial cells from undesired stress responses is also described. Finally, this chapter provides a comprehensive overview on the challenges for the adoption of novel preservation technologies for fermentation, including their latest applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldabran, H. A., Chatzifragkou, A., Khutoryanskiy, V. V., & Charalampopoulos, D. (2015). Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Research International, 74, 2018–2216.

    Google Scholar 

  • Alonso, S., Rendueles, M., & Díaz, M. (2014). Physiological heterogeneity in Lactobacillus casei fermentations on residual yoghurt whey. Process Biochemistry, 49, 732–739.

    Article  CAS  Google Scholar 

  • Alonso, S., Rendueles, M., & Díaz, M. (2015). A novel approach to monitor stress-induced physiological responses in immobilized microorganisms. Applied Microbiology and Biotechnology, 99, 3573–3583.

    Article  CAS  Google Scholar 

  • Ampatzoglou, A., Schurr, B., Deepika, G., Baipong, S., & Charalampopoulos, D. (2010). Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG. Biochemical Engineering Journal, 52, 65–70.

    Article  CAS  Google Scholar 

  • Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15, 399–409.

    Article  CAS  Google Scholar 

  • Basholli-Salihu, M., Mueller, M., Salar-Behzai, S., Unger, F. M., & Viernstein, H. (2014). Effect of lyoprotectants on β-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. LWT--Food Science and Technology, 57, 276–282.

    Article  CAS  Google Scholar 

  • Bensch, G., Rüger, M., Wassermann, M., Weinholz, S., Reichl, U., & Cordes, C. (2014). Flow cytometric viability assessment of lactic acid bacteria starter cultures produced by fluidized bed drying. Applied Microbiology and Biotechnology, 98, 4897–4909.

    Article  CAS  Google Scholar 

  • Bhushani, J. A., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 38, 21–33.

    Article  Google Scholar 

  • Broadbent, J. R., & Lin, C. (1999). Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology, 39, 88–102.

    Article  CAS  Google Scholar 

  • Burns, P., Vinderola, G., Molinaru, F., & Reinheimer, J. (2008). Suitability of whey and buttermilk for the growth and frozen storage of probiotic lactobacilli. International Journal of Dairy Technology, 61, 156–164.

    Article  CAS  Google Scholar 

  • Camelini, C. M., Pena, D. A., Gomes, A., Steindel, M., Rossi, M. J., Giachini, A. J., et al. (2012). An efficient technique for in vitro preservation of Agaricus subrufescens (=A. brasiliensis). Annals of Microbiology, 62, 1279–1285.

    Article  CAS  Google Scholar 

  • Canbolat, M. F., Gera, N., Tang, C., Monian, B., Rao, B. M., Pourdeyhimi, B., et al. (2013). Preservation of cell viability and protein conformation on immobilization within nanofibers via electrospinning functionalized yeast. ACS Applied Materials & Interfaces, 5, 9349–9354.

    Article  CAS  Google Scholar 

  • Cao-Hoang, L., Dumont, F., Marechal, P. A., Le-Thanh, M., & Gervais, P. (2008). Rates of chilling to 0°C: Implications for the survival of microorganisms and relationship with membrane fluidity modifications. Applied Microbiology and Biotechnology, 77, 1379–1387.

    Article  CAS  Google Scholar 

  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004a). Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal, 14, 835–847.

    Article  CAS  Google Scholar 

  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004b). Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnology Progress, 20, 248–254.

    Article  CAS  Google Scholar 

  • Champagne, C. P., Gardner, N., Brochu, E., & Beaulieu, Y. (1991). The freeze-drying of lactic acid bacteria: A review. Canadian Institute of Food Science and Technology, 24, 118–128.

    Article  Google Scholar 

  • Chen, S., Cao, Y., Fergusson, L. R., Shu, Q., & Garg, S. (2012). Flow cytometric assessment of the protectants for enhanced in vitro survival of probiotic lactic acid bacteria through simulated human gastro-intestinal stresses. Applied Microbiology and Biotechnology, 95, 345–356.

    Article  CAS  Google Scholar 

  • Chen, S., Ferguson, L. R., Shu, Q., & Garg, S. (2011). The application of flow cytometry to the characterisation of a probiotic strain Lactobacillus reuteri DPC16 and the evaluation of sugar preservatives for its lyophilisation LWT-Food. Science and Technology, 44, 1873–1879.

    CAS  Google Scholar 

  • Chu-Ky, S., Vaysse, L., Liengprayoon, S., Sriroth, K., & Le, T. M. (2013). Acid adaptation for improvement of viability of Saccharomyces cerevisiae during freeze-drying. International Journal of Food Science and Technology, 48, 1468–1473.

    Article  Google Scholar 

  • Corveleyn, S., Dhaese, P., Neirynck, S., & Steidler, L. (2012). Cryoprotectants for freeze drying of lactic acid bacteria. US 2012/0049853 A1.

    Google Scholar 

  • Desimore, M. F., De Marzi, M. C., Copello, G. J., Fernández, M. M., Malchiodi, E. L., & Diaz, L. E. (2005). Efficient preservation in a silicon matrix of Escherichia coli, producer of recombinant proteins. Applied Microbiology and Biotechnology, 68, 747–752.

    Article  Google Scholar 

  • Fonseca, F., Béal, C., Mihoub, F., Marin, M., & Corrieu, G. (2003). Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects. International Dairy Journal, 13, 917–926.

    Article  CAS  Google Scholar 

  • Fonseca, F., Béal, C., & Corrieu, G. (2001). Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage. Cryobiology, 43, 189–198.

    Article  CAS  Google Scholar 

  • Fu, N., & Chen, D. (2011). Towards a maximal cell survival in convective thermal drying processes. Food Research International, 44, 1127–1149.

    Article  CAS  Google Scholar 

  • Gawande, D., & Griffiths, M. (2005). Growth history influences starvation-induced expression of uspA, grpE, and rpoS and subsequent cryotolerance in Escherichia coli O157:H7. Journal of Food Protection, 68, 1154–1158.

    CAS  Google Scholar 

  • Hays, H. C. W., Millner, P. A., Jones, J. K., & Rayner-Brandes, M. H. (2005). A novel and convenient self-drying system for bacterial preservation. Journal of Microbiological Methods, 63, 29–35.

    Article  Google Scholar 

  • Heylen, K., Hoefman, S., Vekeman, B., Peiren, J., & De Vos, P. (2012). Safe guarding bacterial resources promotes biotechnological innovation. Applied Microbiology and Biotechnology, 94, 565–574.

    Article  CAS  Google Scholar 

  • Homolka, L. (2014). Preservation of live cultures of basidiomycetes—Recent methods. Fungal Biology, 118, 107–125.

    Article  Google Scholar 

  • Hubálek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology, 46, 205–229.

    Article  Google Scholar 

  • Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E., & Mercenier, A. (2010). Application of probiotics in food products—Challenges and new approaches. Current Opinion in Biotechnology, 21, 175–181.

    Article  CAS  Google Scholar 

  • Jantzen, M., Göpel, A., & Beermann, C. (2013). Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey. Journal of Applied Microbiology, 115, 1029–1036.

    CAS  Google Scholar 

  • Kanmani, P., Kumar, R. S., Yuvaraj, N., Paari, K. A., Pattukumar, V., & Arul, V. (2011). Effect of cryopreservation and microencapsulation of lactic acid bacterium Enterococcus faecium MC13 for long-term storage. Biochemical Engineering Journal, 58, 140–147.

    Article  Google Scholar 

  • King, V. A. E., & Su, J. T. (1994). Dehydration of Lactobacillus acidophilus. Process Biochemistry, 28, 47–52.

    Article  Google Scholar 

  • Koch, S., Oberton, G., Eugster-Meier, E., Melle, L., & Lacroix, C. (2007). Osmotic stress induced by salt increases cell yield, autolytic activity, and survival of lyophilization of Lactobacillus delbrueckii subsp lactis. International Journal of Food Microbiology, 117, 36–42.

    Article  CAS  Google Scholar 

  • Krummow, A. A., Sorokulova, I. B., Olsen, E., Globa, L., Barbaree, J. M., & Vodyanoy, V. J. (2009). Preservation of bacteria in natural polymers. Journal of Microbiological Methods, 78, 189–194.

    Article  Google Scholar 

  • Kupletskaya, M. B., & Netrusov, A. I. (2011). Viability of lyophilized microorganisms after 50-year storage. Mikrobiologiya, 80, 842–846.

    Google Scholar 

  • Lacroix, C., & Yildirim, S. (2007). Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology, 18, 176–183.

    Article  CAS  Google Scholar 

  • Laelorspoen, N., Wonsasulak, S., Yoovidhya, T., & Devahastin, S. (2014). Microencapsulation of Lactobacillus acidophilus in zein-alginate core-shell microcapsules via electrospraying. Journal of Functional Foods, 7, 342–349.

    Article  CAS  Google Scholar 

  • Lavari, L., Ianniello, R., Páez, R., Zotta, T., Cuatrin, A., Reinheimer, J., et al. (2015). Growth of Lactobacillus rhamnosus 64 in whey permeate and study of the effect of mild stresses on survival to spray drying. LWT--Food Science and Technology, 63, 322–330.

    Article  CAS  Google Scholar 

  • Lavari, L., Páez, R., Cuatrin, A., Reinheimer, J., & Vinderola, G. (2014). Use of cheese whey for biomass production and spray drying of probiotic lactobacilli. Journal of Dairy Research, 81, 267–274.

    Article  CAS  Google Scholar 

  • Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H., & Chen, W. (2011). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and Biotechnology, 92, 609–616.

    Article  CAS  Google Scholar 

  • Liu, X., Gu, Q., Liao, C., & Yu, X. (2014). Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol-glycerol storage during long-term preservation. Biomass and Bioenergy, 69, 192–197.

    Article  CAS  Google Scholar 

  • Liu, Y., Rafailovich, M. H., Malal, R., Cohn, D., & Chidambaram, D. (2009). Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proceedings of the National Academy of Sciences of the United States of America, 25, 14201–14206.

    Article  Google Scholar 

  • Lodato, P., Segovia de Huergo, M., & Buera, M. P. (1999). Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Applied Microbiology and Biotechnology, 52, 215–220.

    Article  CAS  Google Scholar 

  • López-Rubio, A., Sanchez, E., Sanz, Y., & Lagaron, J. M. (2009). Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules, 10, 2823–2829.

    Article  Google Scholar 

  • López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 28, 159–167.

    Article  Google Scholar 

  • Louesdon, S., Charlot-Rougé, S., Juillard, V., Tourdot-Maréchal, R., & Béal, C. (2014). Osmotic stress affects the stability of freeze-dried Lactobacillus buchneri R1102 as a result of intracellular betaine accumulation and membrane characteristics. Journal of Applied Microbiology, 117, 196–207.

    Article  CAS  Google Scholar 

  • Louesdon, S., Charlot-Rougé, S., Tourdot-Maréchal, R., Bouix, M., & Béal, C. (2014). Membrane fatty acid composition and fluidity are involved in the resistance to freezing of Lactobacillus buchneri R1102 and Bifidobacterium longum R0175. Microbial Biotechnology, 8, 311–318.

    Article  Google Scholar 

  • Malik, K. A. (1990). A simplified liquid-drying method for the preservation of microorganisms sensitive to freezing and freeze-drying. Journal of Microbiological Methods, 12, 125–132.

    Article  Google Scholar 

  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotics effects. Innovative Food Science & Emerging Technologies, 27, 15–25.

    Article  Google Scholar 

  • Martin-Dejardin, F., Ebel, B., Lemetais, G., Minh, H. N. T., Gervais, P., Cachon, R., et al. (2013). A way to follow the viability of encapsulated Bifidobacterium bifidum subjected to a freeze-drying process in order to target the colon: Interest of flow cytometry. European Journal of Pharmaceutical Sciences, 49, 166–174.

    Article  CAS  Google Scholar 

  • Martos, G. I., Minahk, C. J., Font de Valdez, G., Morero, R. (2007). Effects of protective agents on membrane fluidity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Letters in Applied Microbiology, 45, 282–288.

    Google Scholar 

  • Matoulková, D., & Sigler, K. (2011). Impact of the long-term maintenance method of brewer’s yeast on fermentation course, yeast vitality and beer characteristics. Journal of the Institute of Brewing, 117, 383–388.

    Article  Google Scholar 

  • Missous, G., Thammavongs, B., Dieuleveux, V., Guéguen, M., & Panoff, J. M. (2007). Improvement of the cryopreservation of the fungal starter Geotrichum candidum by artificial nucleation and temperature downshift control. Cryobiology, 55, 66–71.

    Article  CAS  Google Scholar 

  • Morono, Y., Terada, T., Yamamoto, Y., Xiao, N., Hirose, T., Sugeno, M., et al. (2015). Intact preservation of environmental samples by freezing under an alternating magnetic field. Environmental Microbiology Reports, 7, 243–251.

    Article  CAS  Google Scholar 

  • Moussa, M., Dumont, F., Perrier-Cornet, J. M., & Gervais, P. (2008). Cell inactivation and membrane damage after long-term treatments at sub-zero temperature in the supercooled and frozen states. Biotechnology and Bioengineering, 101, 1245–1255.

    Article  CAS  Google Scholar 

  • Muller, J. A., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2009). Manufacture of probiotic bacteria. In D. Charalampopoulos & R. A. Rastall (Eds.), Prebiotics and probiotics science and technology (1st ed., pp. 727–762). New York: Springer.

    Google Scholar 

  • Nag, A., & Das, S. (2013). Effect of trehalose and lactose as cryoprotectants during freeze-drying, in vitro gastro-intestinal transit and survival of microencapsulated freeze-dried Lactobacillus casei 431 cells. International Journal of Dairy Technology, 66, 162–169.

    Article  CAS  Google Scholar 

  • Navarta, L. G., Calvo, J., Calvente, V., Benuzzi, D., & Sanz, M. I. (2011). Freezing and free-drying of the bacterium Rahnella aquatilis BNM 0523: Study of protecting agents, rehydration media and freezing temperatures. Letters in Applied Microbiology, 53, 565–571.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., Razafindralambo, H., Blecker, C., N’Yapo, C., Thornat, P., & Delvigne, F. (2014). Stochastic exposure to sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium bifidum cell survival to freeze-drying. Biochemical Engineering Journal, 88, 85–94.

    Article  CAS  Google Scholar 

  • Nyanga, L. K., Nout, M. J. R., Smid, E. J., Boekhout, T., & Zwietering, M. H. (2012). Yeast preservation: Alternatives for lyophilisation. World Journal of Microbiology and Biotechnology, 28, 3239–3244.

    Article  Google Scholar 

  • Otero, M. C., Espeche, M. C., & Nader-Macías, M. E. (2007). Optimization of the freeze-drying media and survival throughout storage of freeze-dried Lactobacillus gasseri and Lactobacillus delbrueckii subsp. delbrueckii for veterinarian probiotic applications. Process Biochemistry, 42, 1406–1411.

    Article  CAS  Google Scholar 

  • Páez, R., Lavari, L., Audero, G., Cuatrin, A., Zaritzky, N., Reinheimer, J., et al. (2013). Study of the effects of spray-drying on the functionality of probiotic lactobacilli. International Journal of Dairy Technology, 66, 155–161.

    Article  Google Scholar 

  • Páez, R., Lavari, L., Vinderola, G., Audero, G., Cuatrin, A., Zaritzky, N., et al. (2012). Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Research International, 48, 748–754.

    Article  Google Scholar 

  • Peighambardoust, S. H., Tafti, A. G., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: A review. Trends in Food Science and Technology, 22, 215–224.

    Article  CAS  Google Scholar 

  • Peiren, J., Buyse, J., De Vos, P., Lang, E., Clermont, D., Hamon, S., et al. (2015). Improving survival and storage stability of bacteria recalcitrant to freeze-drying: A coordinated study by European culture collections. Applied Microbiology and Biotechnology, 99, 3559–3571.

    Article  CAS  Google Scholar 

  • Pénicaud, C., Landaud, S., Jamme, F., Talbot, P., Bouix, M., Ghorbal, S., et al. (2014). Physiological and biochemical responses of Yarrowia lipolytica to dehydration induced by air-drying and freezing. Plos One, 9, 1–12.

    Article  Google Scholar 

  • Pinotti, L. M., Silva, R. G., Zangirolami, T. C., & Giordano, R. L. C. (2007). Maintenance of penicillin G acylase expression by B. megaterium: Preservation methods and activity recovery. Brazilian Journal of Chemical Engineering, 24, 307–313.

    Article  CAS  Google Scholar 

  • Prakash, O., Nimonkar, Y., & Shouche, Y. S. (2013). Practice and prospects of microbial preservation. FEMS Microbiology Letters, 339, 1–9.

    Article  CAS  Google Scholar 

  • Rault, A., Béal, C., Ghorbal, S., Ogier, J. C., & Bouix, M. (2007). Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology, 55, 35–43.

    Article  CAS  Google Scholar 

  • Rault, A., Bouix, M., & Béal, C. (2008). Dynamic analysis of Lactobacillus delbrueckii subsp. bulgaricus CFL1 physiological characteristics during fermentation. Applied Microbiology and Biotechnology, 81, 559–570.

    Article  CAS  Google Scholar 

  • Rault, A., Bouix, M., & Béal, C. (2010). Cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1 is influenced by the physiological state during fermentation. International Dairy Journal, 20, 792–799.

    Article  CAS  Google Scholar 

  • Saarela, M., Virkajärvi, I., Alakomi, H. L., Mattila-Sandholm, T., Vaari, A., Suomalainen, T., et al. (2005). Influence of fermentation time, cryoprotectants and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients. Journal of Applied Microbiology, 99, 1330–1339.

    Article  CAS  Google Scholar 

  • Salar-Behzadi, S., Wu, S., Toegel, S., Hofrichter, M., Altenburger, I., Unger, F. M., et al. (2013). Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Research International, 54, 93–101.

    Article  CAS  Google Scholar 

  • Santos, M. I., Araujo-Andrade, C., Esparza-Ibarra, E., Tymczyszym, E., & Gómez-Zavaglia, A. (2014). Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulgaricus. Biotechnology Progress, 30, 1231–1238.

    Article  CAS  Google Scholar 

  • Santos, M., Gerbino, E., Araujo-Andrade, C., Tymczyszyn, E. E., & Gomez-Zavaglia, A. (2014). Stability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus in the presence of galacto-oligosaccharides and lactulose as determined by near infrared spectroscopy. Food Research International, 59, 53–60.

    Article  CAS  Google Scholar 

  • Schuck, P., Dolivet, A., Méjean, S., Hervé, C., & Jeantet, R. (2013). Spray drying of dairy bacteria: New opportunities to improve the viability of bacteria powders. International Dairy Journal, 31, 12–17.

    Article  Google Scholar 

  • Schwab, C., Vogel, R., & Ganzle, M. G. (2007). Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology, 55, 108–114.

    Article  CAS  Google Scholar 

  • Siaterlis, A., Deepika, G., & Charalampopoulos, D. (2009). Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Letters in Applied Microbiology, 48, 295–301.

    Article  CAS  Google Scholar 

  • Sorokulova, I. B., Krummow, A. A., Pathirana, S., Mandell, A. J., & Vodyanoy, V. (2008). Novel methods for storage stability and release of Bacillus spores. Biotechnology Progress, 24, 1147–1153.

    Article  CAS  Google Scholar 

  • Sorokulova, I., Olsen, E., & Vodyanoy, V. (2015). Biopolymers for sample collection, protection, and preservation. Applied Microbiology and Biotechnology, 99, 5397–5406.

    Article  CAS  Google Scholar 

  • Sorokulova, I., Watt, J., Olsen, E., Globa, L., Moore, T., Barbaree, J., et al. (2012). Natural biopolymer for preservation of microorganisms during sampling and storage. Journal of Microbiological Methods, 88, 140–146.

    Article  CAS  Google Scholar 

  • Sousa, S., Gomes, A. M., Pintado, M. M., Malcata, F. X., Silva, J. P., Sousa, J. M., et al. (2012). Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperatures. Engineering in Life Science, 12, 457–465.

    Article  CAS  Google Scholar 

  • Sousa, S., Gomes, A. M., Pintado, M. M., Silva, J. P., Costa, P., Amaral, M. H., et al. (2015). Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. Food and Bioproducts Processing, 93, 90–97.

    Article  CAS  Google Scholar 

  • Streit, F., Delettre, J., Corrieu, G., & Béal, C. (2008). Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. Journal of Applied Microbiology, 105, 1071–1780.

    Article  CAS  Google Scholar 

  • Sunny-Roberts, E. O., & Knorr, D. (2009). The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders. International Dairy Journal, 19, 209–214.

    Article  CAS  Google Scholar 

  • Tedeschi, R., & De Paoli, P. (2011). Collection and preservation of frozen microorganisms. In J. Dillner (Ed.), Methods in biobanking (Methods in molecular biology 1st ed., Vol. 675, pp. 313–326). New York: Springer.

    Chapter  Google Scholar 

  • Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241.

    Article  CAS  Google Scholar 

  • Tymczyszyn, E. E., Gerbino, E., Illanes, A., & Gómez-Zavaglia, A. (2011). Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus. Cryobiology, 62, 123–129.

    Article  Google Scholar 

  • Tymczyszyn, E. E., Sosa, N., Gerbino, E., Hugo, A., Gómez-Zavaglia, A., & Schebor, C. (2012). Effect of physical properties on the stability of Lactobacillus bulgaricus in freeze-dried galacto-oligosaccharides matrix. International Journal of Food Microbiology, 155, 217–221.

    Article  CAS  Google Scholar 

  • Velly, H., Fonseca, F., Passot, S., Delacroix-Buchet, A., & Bouix, M. (2014). Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions. Journal of Applied Microbiology, 117, 729–740.

    Article  CAS  Google Scholar 

  • Volkert, M., Ananta, E., Luscher, C., & Knorr, D. (2008). Effect of air freezing, spray freezing, and pressure shift freezing on membrane integrity and viability of Lactobacillus rhamnosus GG. Journal of Food Engineering, 87, 532–540.

    Article  Google Scholar 

  • Wang, Y., Delettre, J., Corrieu, G., & Béal, C. (2011). Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758. Biotechnology Progress, 27, 342–350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saúl Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alonso, S. (2016). Novel Preservation Techniques for Microbial Cultures. In: Ojha, K., Tiwari, B. (eds) Novel Food Fermentation Technologies. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42457-6_2

Download citation

Publish with us

Policies and ethics