Skip to main content

Wall Following in a Semi-closed-loop Fly-Robotic Interface

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Abstract

To assess the responses of an identified optic-flow processing interneuron in the fly motion-vision pathway, the H1-cell, we performed semi-closed-loop experiments using a bio-hybrid two-wheeled robotic platform. We implemented a feedback-control architecture that established ‘wall following’ behaviour of the robot based on the H1-cell’s spike rate. The analysis of neuronal data suggests the spiking activity of the cell depends on both the momentary turning radius of the robot as well as the distance of the fly’s eyes from the walls of the experimental arena. A phenomenological model that takes into account the robot’s turning radius predicts spike rates that are in agreement with our experimental data. Consequently, measuring the turning radius using on-board sensors will enable us to extract distance information from H1-cell signals to further improve collision avoidance performance of our fly-robotic interface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fox, J.L., Frye, M.: Animal behavior: fly flight moves forward. Curr. Biol. 23, R278–R279 (2013)

    Article  Google Scholar 

  2. Reiser, M.B., Dickinson, M.H.: Visual motion speed determines a behavioral switch from forward flight to expansion avoidance in Drosophila. J. Exp. Biol. 216, 719–732 (2013)

    Article  Google Scholar 

  3. Krapp, H.G., Gabbiani, F.: Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron. J. Neurophysiol. 93, 2240–2253 (2005)

    Article  Google Scholar 

  4. Wicklein, M., Strausfeld, N.J.: Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta. J. Comp. Neurol. 424, 356–376 (2000)

    Article  Google Scholar 

  5. Blanchard, M., Rind, F.C., Verschure, P.F.M.J.: Collision avoidance using a model of the locust LGMD neuron. Robot. Auton. Syst. 30, 17–38 (2000)

    Article  Google Scholar 

  6. Bertrand, O.J.N., Lindemann, J.P., Egelhaaf, M.: A bio-inspired collision avoidance model based on spatial information derived from motion detectors leads to common routes. PLoS Comput. Biol. 11, e1004339 (2015)

    Article  Google Scholar 

  7. Kern, R., Boeddeker, N., Dittmar, L., Egelhaaf, M.: Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information. J. Exp. Biol. 215, 2501–2514 (2012)

    Article  Google Scholar 

  8. Hausen, K.: Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch. 31c, 629–633 (1976)

    Google Scholar 

  9. Krapp, H.G., Hengstenberg, R., Egelhaaf, M.: Binocular contributions to optic flow processing in the fly visual system. J. Neurophysiol. 85, 724–734 (2001)

    Google Scholar 

  10. Longden, K.D., Krapp, H.G.: Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front. Syst. Neurosci. 4, 153 (2010)

    Article  Google Scholar 

  11. Maddess, T., Laughlin, S.B.: Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc. R. Soc. Lond. B Biol. Sci. 225, 251–275 (1985)

    Article  Google Scholar 

  12. Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.R.: Neural coding of naturalistic motion stimuli. Netw. Bristol Engl. 12, 317–329 (2001)

    Article  Google Scholar 

  13. Lindemann, J.P., Egelhaaf, M.: Texture dependence of motion sensing and free flight behavior in blowflies. Front. Behav. Neurosci. 6, 92 (2013)

    Article  Google Scholar 

  14. Huang, J.V., Krapp, H.G.: Miniaturized electrophysiology platform for fly-robot interface to study multisensory integration. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 119–130. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Huang, J.V., Krapp, H.G.: A predictive model for closed-loop collision avoidance in a fly-robotic interface. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 130–141. Springer, Heidelberg (2014)

    Google Scholar 

  16. Huang, J.V., Krapp, H.G.: Closed-loop control in an autonomous bio-hybrid robot system based on binocular neuronal input. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 164–174. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  17. Koenderink, J.J., van Doorn, A.J.: Facts on optic flow. Biol. Cybern. 56, 247–254 (1987)

    Article  MATH  Google Scholar 

  18. Lindemann, J.P., Kern, R., van Hateren, J.H., Ritter, H., Egelhaaf, M.: On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway. J. Neurosci. 25, 6435–6448 (2005)

    Article  Google Scholar 

  19. Franceschini, N.: Pupil and pseudopupil in the compound eye of Drosophila. In: Wehner, R. (ed.) Information Processing in the Visual Systems of Anthropods, pp. 75–82. Springer, Heidelberg (1972)

    Chapter  Google Scholar 

  20. Karmeier, K., Tabor, R., Egelhaaf, M., Krapp, H.G.: Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Vis. Neurosci. 18, 1–8 (2001)

    Article  Google Scholar 

  21. Mauss, A.S., Pankova, K., Arenz, A., Nern, A., Rubin, G.M., Borst, A.: Neural circuit to integrate opposing motions in the visual field. Cell 162, 351–362 (2015)

    Article  Google Scholar 

  22. Petrowitz, R., Dahmen, H., Egelhaaf, M., Krapp, H.G.: Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora. J. Comp. Physiol. 186, 737–746 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Caroline Golden for improving the proofreading the manuscript. This work was partially supported by US AFOSR/EOARD grant FA8655-09-1-3083 to HGK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqi V. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, J.V., Wang, Y., Krapp, H.G. (2016). Wall Following in a Semi-closed-loop Fly-Robotic Interface. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics