Skip to main content

A Soft Pneumatic Maggot Robot

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Included in the following conference series:

Abstract

Drosophila melanogaster has been studied to gain insight into relationships between neural circuits and learning behaviour. To test models of their neural circuits, a robot that mimics D. melanogaster larvae has been designed. The robot is made from silicone by casting in 3D printed moulds with a pattern simplified from the larval muscle system. The pattern forms air chambers that function as pneumatic muscles to actuate the robot. A pneumatic control system has been designed to enable control of the multiple degrees of freedom. With the flexible body and multiple degrees of freedom, the robot has the potential to resemble motions of D. melanogaster larvae, although it remains difficult to obtain accurate control of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bate, M.: The mesoderm and its derivatives. The Development of Drosophila Melanogaster, pp. 1013–1090. Cold Spring Harbor Laboratory Press, New York (1993)

    Google Scholar 

  2. Brand, A.H., Perrimon, N.: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (Cambridge, England) 118(2), 401–415 (1993)

    Google Scholar 

  3. Gomez-Marin, A., Louis, M.: Multilevel control of run orientation in Drosophila larval chemotaxis. Front. Behav. Neurosci. 8, 38 (2014)

    Article  Google Scholar 

  4. Heckscher, E.S., Lockery, S.R., Doe, C.Q.: Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. J. Neurosci. 32(36), 12460–12471 (2012)

    Article  Google Scholar 

  5. Kohsaka, H., Okusawa, S., Itakura, Y., Fushiki, A., Nose, A.: Development of larval motor circuits in Drosophila. Dev. Growth Differ. 54(3), 408–419 (2012)

    Article  Google Scholar 

  6. Lin, H.T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 026007 (2011)

    Article  Google Scholar 

  7. Menciassi, A., Accoto, D., Gorini, S., Dario, P.: Development of a biomimetic miniature robotic crawler. Auton. Robots 21(2), 155–163 (2006)

    Article  Google Scholar 

  8. mikey77: Soft robots: Making robot air muscles. Webpage (2012). http://www.instructables.com/id/Soft-Robots-Making-Robot-Air-Muscles/

  9. Ogura, K., Wakimoto, S., Suzumori, K., Nishioka, Y.: Micro pneumatic curling actuator - Nematode actuator. In: 2008 IEEE International Conference on Robotics and Biomimetics, pp. 462–467 (2009)

    Google Scholar 

  10. Olsen, S.R., Wilson, R.I.: Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci. 31(10), 512–520 (2008)

    Article  Google Scholar 

  11. Onal, C.D., Rus, D.: Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir. Biomim. 8(2), 026003 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23524383

    Article  Google Scholar 

  12. Ross, D., Lagogiannis, K., Webb, B.: A model of larval biomechanics reveals exploitable passive properties for efficient locomotion. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 1–12. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  13. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: From the cover: multigait soft robot. Proc. Nat. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  14. Subach, F.V., Patterson, G.H., Manley, S., Gillette, J.M., Lippincott-Schwartz, J., Verkhusha, V.V.: Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6(2), 153–159 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqi Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wei, T., Stokes, A., Webb, B. (2016). A Soft Pneumatic Maggot Robot. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics