Skip to main content

Retina Color-Opponency Based Pursuit Implemented Through Spiking Neural Networks in the Neurorobotics Platform

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2016)

Abstract

The ‘red-green’ pathway of the retina is classically recognized as one of the retinal mechanisms allowing humans to gather color information from light, by combining information from L-cones and M-cones in an opponent way. The precise retinal circuitry that allows the opponency process to occur is still uncertain, but it is known that signals from L-cones and M-cones, having a widely overlapping spectral response, contribute with opposite signs. In this paper, we simulate the red-green opponency process using a retina model based on linear-nonlinear analysis to characterize context adaptation and exploiting an image-processing approach to simulate the neural responses in order to track a moving target. Moreover, we integrate this model within a visual pursuit controller implemented as a spiking neural network to guide eye movements in a humanoid robot. Tests conducted in the Neurorobotics Platform confirm the effectiveness of the whole model. This work is the first step towards a bio-inspired smooth pursuit model embedding a retina model using spiking neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.humanbrainproject.eu/.

References

  1. Dacey, D.M.: Primate retina: cell types, circuits and color opponency. Prog. Retinal Eye Res. 18(6), 737–763 (1999)

    Article  Google Scholar 

  2. Baylor, D., Nunn, B., Schnapf, J.: Spectral sensitivity of cones of the monkey Macaca fascicularis. J. Physiol. 390, 145 (1987)

    Article  Google Scholar 

  3. Dacey, D.M., Packer, O.S.: Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13(4), 421–427 (2003)

    Article  Google Scholar 

  4. Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.: Biomimetic oculomotor control. Adapt. Behav. 9(3–4), 189–207 (2001)

    Article  Google Scholar 

  5. Falotico, E., Zambrano, D., Muscolo, G., Marazzato, L., Dario, P., Laschi, C.: Implementation of a bio-inspired visual tracking model on the icub robot. In: Proceedings of IEEE International Workshop on Robot and Human Interactive Communication, pp. 564–569 (2010)

    Google Scholar 

  6. Vannucci, L., Cauli, N., Falotico, E., Bernardino, A., Laschi, C.: Adaptive visual pursuit involving eye-head coordination and prediction of the target motion. In: IEEE-RAS International Conference on Humanoid Robots, pp. 541–546 (2014)

    Google Scholar 

  7. Vannucci, L., Falotico, E., Di Lecce, N., Dario, P., Laschi, C.: Integrating feedback and predictive control in a bio-inspired model of visual pursuit implemented on a humanoid robot. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS (LNAI), vol. 9222, pp. 256–267. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  8. Zambrano, D., Falotico, E., Manfredi, L., Laschi, C.: A model of the smooth pursuit eye movement with prediction and learning. Appl. Bionics Biomech. 7(2), 109–118 (2010)

    Article  Google Scholar 

  9. Falotico, E., Taiana, M., Zambrano, D., Bernardino, A., Santos-Victor, J., Dario, P., Laschi, C.: Predictive tracking across occlusions in the icub robot. In: 9th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2009, pp. 486–491 (2009)

    Google Scholar 

  10. Benoit, A., Caplier, A., Durette, B., Hérault, J.: Using human visual system modeling for bio-inspired low level image processing. Comput. Vis. Image Underst. 114(7), 758–773 (2010)

    Article  Google Scholar 

  11. Wohrer, A., Kornprobst, P.: Virtual retina: a biological retina model and simulator, with contrast gain control. J. Comput. Neurosci. 26(2), 219–249 (2009)

    Article  MathSciNet  Google Scholar 

  12. Hérault, J., Durette, B.: Modeling visual perception for image processing. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 662–675. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Ros, E., Fernández, E.: A design framework to model retinas. Biosystems 87(2), 156–163 (2007)

    Article  Google Scholar 

  14. Martínez-Cañada, P., Morillas, C., Pino, B., Ros, E., Pelayo, F.: A computational framework for realistic retina modeling. Int. J. Neural Syst. (Accepted for publication)

    Google Scholar 

  15. Martínez-Cañada, P., Morillas, C., Nieves, J.L., Pino, B., Pelayo, F.: First stage of a human visual system simulator: the retina. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2015. LNCS, vol. 9016, pp. 118–127. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  16. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9(6), 1179–1209 (1997)

    Article  Google Scholar 

  17. Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  18. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  19. Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., Von Hofsten, C., Rosander, K., Lopes, M., Santos-Victor, J., et al.: The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. 23(8), 1125–1134 (2010)

    Article  Google Scholar 

  20. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  21. Hinkel, G., Groenda, H., Vannucci, L., Denninger, O., Cauli, N., Ulbrich, S.: A domain-specific language (DSL) for integrating neuronal networks in robot control. In: ACM International Conference Proceeding Series, pp. 9–15, 21 July 2015

    Google Scholar 

  22. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)

    Article  Google Scholar 

  23. Vannucci, L., Ambrosano, A., Cauli, N., Albanese, U., Falotico, E., Ulbrich, S., Pfotzer, L., Hinkel, G., Denninger, O., Peppicelli, D., Guyot, L., Von Arnim, A., Deser, S., Maier, P., Dillman, R., Klinker, G., Levi, P., Knoll, A., Gewaltig, M.O., Laschi, C.: A visual tracking model implemented on the iCub robot as a use case for a novel neurorobotic toolkit integrating brain and physics simulation. In: IEEE-RAS International Conference on Humanoid Robots, pp. 1179–1184 (2015)

    Google Scholar 

  24. Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: A 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuits 48(8), 1943–1953 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project). The authors would like to thank the Italian Ministry of Foreign Affairs, General Directorate for the Promotion of the “Country System”, Bilateral and Multilateral Scientific and Technological Cooperation Unit, for the support through the Joint Laboratory on Biorobotics Engineering project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Ambrosano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ambrosano, A. et al. (2016). Retina Color-Opponency Based Pursuit Implemented Through Spiking Neural Networks in the Neurorobotics Platform. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics