Skip to main content

A Neural Network with Central Pattern Generators Entrained by Sensory Feedback Controls Walking of a Bipedal Model

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9793))

Included in the following conference series:

Abstract

A neuromechanical simulation of a planar, bipedal walking robot has been developed. It is constructed as a simplified musculoskeletal system to mimic the biomechanics of the human lower body. The controller consists of a dynamic neural network with central pattern generators (CPGs) entrained by force and movement sensory feedback to generate appropriate muscle forces for walking. The CPG model is a two-level architecture, which consists of separate rhythm generator (RG) and pattern formation (PF) networks. The presented planar biped model walks stably in the sagittal plane without inertial sensors or a centralized posture controller or a “baby walker” to help overcome gravity. Its gait is similar to humans’ with a walking speed of 1.2 m/s. The model walks over small obstacles (5 % of the leg length) and up and down 5° slopes without any additional higher level control actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guertin, P.A.: Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3, 4–15 (2013)

    Article  Google Scholar 

  2. Mackay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82, 69–83 (2002)

    Google Scholar 

  3. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)

    Article  Google Scholar 

  4. Grillner, S., Zangger, P.: On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261 (1979)

    Article  Google Scholar 

  5. Pearson, K.G., Rossignol, S.: Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66, 1874–1887 (1991)

    Google Scholar 

  6. Dimitrijevic, M.R., Gerasimenko, Y., Pinter, M.M.: Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860, 360–376 (1998)

    Article  Google Scholar 

  7. Dickinson, M.H., et al.: How animals move: an integrative view. Science 288, 100–106 (2000)

    Article  Google Scholar 

  8. Pearson, K.G.: Common principles of motor control in vertebrates and invertebrates. Ann. Rev. Neurosci. 16, 265–297 (1993)

    Article  Google Scholar 

  9. Rossignol, S., Dubuc, R., Gossard, J.P.: Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 (2006)

    Article  Google Scholar 

  10. McCrea, D.A.: Spinal circuitry of sensorimotor control of locomotion. J. Physiol. 533, 41–50 (2001)

    Article  Google Scholar 

  11. Pearson, K.G.: Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143, 123–129 (2004)

    Article  Google Scholar 

  12. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  13. Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Auton. Robots 19, 219–232 (2005)

    Article  Google Scholar 

  14. Ogihara, N., Yamazaki, N.: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol. Cybern. 84, 1–11 (2001)

    Article  Google Scholar 

  15. Paul, C., Bellotti, M., Jezernik, S., Curt, A.: Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biol. Cybern. 93, 153–170 (2005)

    Article  MATH  Google Scholar 

  16. Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)

    Article  Google Scholar 

  17. Van der Noot, N., Ijspeert, A.J., Ronsse, R.: Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model. In: IEEE International Conference on ICRA 2015, pp. 6267–6274 (2015)

    Google Scholar 

  18. Morimoto, J., Endo, G., Nakanishi, J., Cheng, G.: A biologically inspired bipded locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. IEEE Trans. Robot. 24(1), 185–191 (2008)

    Article  Google Scholar 

  19. Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings of 2006 IEEE International Conference on ICRA 2006, pp. 1585–1590 (2006)

    Google Scholar 

  20. Klein, T.J., Lewis, M.A.: A physical model of sensorimotor interactions during locomotion. J. Neural Eng. 9(4), 1–14 (2012)

    Article  Google Scholar 

  21. Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulation. J. Neurosci. Methods 187(2), 280–288 (2010)

    Article  Google Scholar 

  22. Fischer, M., Witte, H.: Legs evolved only at the end. Philos. Trans. R. Soc. A 365, 185–198 (2006)

    Article  Google Scholar 

  23. Plagenhoef, S., Evans, F.G., Abdelnour, T.: Anatomical data for analyzing human motion. Res. Q. Exerc. Sport 54, 169–178 (1983)

    Article  Google Scholar 

  24. Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annu. Rev. Physiol. 64(1), 355–405 (2002)

    Article  Google Scholar 

  25. Rybak, I.A., Stecina, K., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modeling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577, 617–639 (2006)

    Article  Google Scholar 

  26. Dietz, V., Duysens, J.: Significance of load receptor input during locomotion: a review. Gait and Posture 11, 102–110 (2000)

    Article  Google Scholar 

  27. Pang, M.Y.C., Yang, J.F.: The initiation of the swing phase in human infant stepping: importance of hip position and leg load. J. Physiol. 528(2), 389–404 (2010)

    Article  Google Scholar 

  28. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8, 383–392 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, W., Szczecinski, N.S., Hunt, A.J., Quinn, R.D. (2016). A Neural Network with Central Pattern Generators Entrained by Sensory Feedback Controls Walking of a Bipedal Model. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics