Skip to main content

A Parametric Study of Mixing in a Granular Flow a Biaxial Spherical Tumbler

  • Conference paper
  • First Online:
Dynamical Systems: Modelling (DSTA 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 181))

Included in the following conference series:

Abstract

We report on a computational parameter space study of mixing protocols for a half-full biaxial spherical granular tumbler. The quality of mixing is quantified via the intensity of segregation (concentration variance) and computed as a function of three system parameters: angles of rotation about each tumbler axis and the flowing layer depth. Only the symmetric case is considered in which the flowing layer depth is the same for each rotation. We also consider the dependence on \(\bar{R}\), which parametrizes the concentric spheroids (“shells”) that comprise the volume of the tumbler. The intensity of segregation is computed over 100 periods of the mixing protocol for each choice of parameters. Each curve is classified via a time constant, \(\tau \), and an asymptotic mixing value, bias. We find that most choices of angles and most shells throughout the tumbler volume mix well, with mixing near the center of the tumbler being consistently faster (small \(\tau \)) and more complete (small bias). We conclude with examples and discussion of the pathological mixing behaviors of the outliers in the so-called \(\tau \)-bias scatterplots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In an experiment, the flowing layer is at an angle with respect to the horizontal, while, in the model, the coordinate system is rotated backwards by this fixed angle. Also, we assume that the effects of side walls and transport in the transverse direction are negligible.

  2. 2.

    In an experiment, several intermediate steps are performed between the rotations [8], however, as far as the mathematical analysis is concerned, the rotations are completely independent.

  3. 3.

    In Figs. 2, 4, 5 and 6 below, the quality of this fit is given as two numbers in brackets in the legend of the rightmost plot. The first number is the coefficient of determination \(R^2\); the second number is the root-mean-squared error in the fit.

  4. 4.

    Though these numbers are for a quasi-2D circular tumbler, they are relevant here too thanks to the geometric similarity assumption used to construct the 3D continuum model. That is to say, if we suppose the quasi-2D tumbler of Jain et al. [24] is the \(x=0\) (or \(z=0\)) cut through the 3D spherical tumbler considered here, then \(\varepsilon _z\) (or \(\varepsilon _x\)) herein is precisely \(\delta _0/R\) in [24].

References

  1. MiDi, G.D.R.: Eur. Phys. J. E 14, 341 (2004). doi:10.1140/epje/i2003-10153-0

    Article  Google Scholar 

  2. Mehrotra, A., Muzzio, F.J.: Powder Technol. 196, 1 (2009). doi:10.1016/j.powtec.2009.06.008

    Article  Google Scholar 

  3. Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge Texts in Applied Mathematics, vol. 3. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  4. Aref, H.: J. Fluid Mech. 143, 1 (1984). doi:10.1017/S0022112084001233

    Article  MathSciNet  Google Scholar 

  5. Wightman, C., Moakher, M., Muzzio, F.J., Walton, O.: AIChE J. 44, 1266 (1998). doi:10.1002/aic.690440605

    Article  Google Scholar 

  6. Gilchrist, J.F., Ottino, J.M.: Phys. Rev. E 68, 061303 (2003). doi:10.1103/PhysRevE.68.061303

    Article  Google Scholar 

  7. Juarez, G., Lueptow, R.M., Ottino, J.M., Sturman, R., Wiggins, S.: EPL 91, 20003 (2010). doi:10.1209/0295-5075/91/20003

    Article  Google Scholar 

  8. Meier, S.W., Lueptow, R.M., Ottino, J.M.: Adv. Phys. 56, 757 (2007). doi:10.1080/00018730701611677

    Article  Google Scholar 

  9. Zaman, Z., D’Ortona, U., Umbanhowar, P., Ottino, J.M., Lueptow, R.M.: Phys. Rev. E 88, 012208 (2013). doi:10.1103/PhysRevE.88.012208

    Article  Google Scholar 

  10. Sturman, R., Meier, S.W., Ottino, J.M., Wiggins, S.: J. Fluid Mech. 602, 129 (2008). doi:10.1017/S002211200800075X

    Article  MathSciNet  Google Scholar 

  11. Christov, I.C., Lueptow, R.M., Ottino, J.M., Sturman, R.: SIAM J. Appl. Dyn. Syst. 13, 901 (2015). doi:10.1137/130934076

    Google Scholar 

  12. Wiggins, S.: J. Fluid Mech. 654, 1 (2010). doi:10.1017/S0022112010002569

    Article  MathSciNet  Google Scholar 

  13. Anderson, P.D., Galaktionov, O.S., Peters, G.W.M., van de Vosse, F.N., Meijer, H.E.H.: J. Non-Newtonian Fluid Mech. 93, 265 (2000). doi:10.1016/S0377-0257(00)00120-8

    Article  Google Scholar 

  14. Galaktionov, O.S., Anderson, P.D., Kruijt, P.G.M., Peters, G.W.M., Meijer, H.E.H.: Comput. Fluids 30, 271 (2001). doi:10.1016/S0045-7930(00)00020-7

    Article  Google Scholar 

  15. Schlick, C.P., Christov, I.C., Umbanhowar, P.B., Ottino, J.M., Lueptow, R.M.: Phys. Fluids 25, 052102 (2013). doi:10.1063/1.4803897

    Article  Google Scholar 

  16. Lackey, T.C., Sotiropoulos, F.: Phys. Fluid 18, 053601 (2006). doi:10.1063/1.2201967

    Article  Google Scholar 

  17. Porion, P., Sommier, N., Faugère, A., Evesque, P.: Powder Technol. 141, 55 (2004). doi:10.1016/j.powtec.2004.02.015

    Article  Google Scholar 

  18. Remy, B., Glasser, B.J., Khinast, J.G.: AIChE J. 56, 336 (2010). doi:10.1002/aic.11979

    Google Scholar 

  19. McIlhany, K.L., Wiggins, S.: Microfluid Nanofluid 10, 249 (2010). doi:10.1007/s10404-010-0656-6

    Article  Google Scholar 

  20. Christov, I.C.: From streamline jumping to strange eigenmodes and three-dimensional chaos: a tour of the mathematical aspects of granular mixing in rotating tumblers. Ph.D. thesis, Northwestern University, Evanston, Illinois (2011)

    Google Scholar 

  21. Pignatel, F., Asselin, C., Krieger, L., Christov, I.C., Ottino, J.M., Lueptow, R.M.: Phys. Rev. E 86, 011304 (2012). doi:10.1103/PhysRevE.86.011304

    Article  Google Scholar 

  22. Danckwerts, P.V.: Appl. Sci. Res. A 3, 279 (1952). doi:10.1007/BF03184936

    Google Scholar 

  23. Lacey, P.M.C.: J. Appl. Chem. 4, 257 (1954). doi:10.1002/jctb.5010040504

    Article  Google Scholar 

  24. Jain, N., Ottino, J.M., Lueptow, R.M.: J. Fluid Mech. 508, 23 (2004). doi:10.1017/S0022112004008869

    Google Scholar 

Download references

Acknowledgments

I.C.C. was supported, in part, by a Walter P. Murphy Fellowship from the Robert R. McCormick School of Engineering and Applied Science and by US National Science Foundation grant CMMI-1000469 at Northwestern and by the LANL/LDRD Program through a Feynman Distinguished Fellowship at Los Alamos National Laboratory, which is operated by Los Alamos National Security, L.L.C. for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We thank Stephen Wiggins for suggesting the \(\tau \)-bias scatterplots and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan C. Christov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Christov, I.C., Lueptow, R.M., Ottino, J.M., Sturman, R. (2016). A Parametric Study of Mixing in a Granular Flow a Biaxial Spherical Tumbler. In: Awrejcewicz, J. (eds) Dynamical Systems: Modelling. DSTA 2015. Springer Proceedings in Mathematics & Statistics, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-319-42402-6_13

Download citation

Publish with us

Policies and ethics