Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 132))

Abstract

By now the study of ion transport and conductivity in ionically conducting materials is a subject of interest to physicists, chemists, materials scientists, and engineers. The interest of physicists is to understand the complex motion of ions leading to steady state diffusion and conductivity. This is a challenging endeavor because of the large number of ions in most ionic conductors of practical interest. The motions of the ions are not independent due to mutual ion interactions as well as interactions with the matrix ions. For this reason the problem of diffusion and electrical conductivity of interacting many-ion system has remained unsolved up to the present time. Historically it was Michael Faraday who discovered ionic transport in electrolytes in the years after 1830 [1]. Following Faraday, it was Kohlrausch [2] in Göttingen, Germany who made the first measurement of electrical relaxation of alkali ions in the Leyden jar (a glass) in 1854. For experimental data, see [3]. He found the relaxation has time-dependence given by

$$ {\phi}_K(t)= \exp \left[-{\left(t/\tau \right)}^{1-n}\right],\ \mathrm{where}\ 0<\left(1-n\right)\le 1, $$

the stretched exponential function, or the Kohlrausch decay function, which continues to be relevant in conductivity relaxation of ionic conductors, structural relaxation of glass-forming liquids, and other research areas. By the way, the stretched exponential function (1.1) was found to describe well the mechanical relaxation in the natural polymer, silk, in 1863 and 1866 by F. Kohlrausch [4, 5], the son of R. Kohlrausch. Nowadays, the function is known to fit well the structural relaxation of glass-forming materials and systems in general. However, since the times Faraday or Kohlrausch started the field, 180 years have gone by and remarkably the problem has not been solved in the physics world. Surprisingly few theoretical attempts have been made in the past years to solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Faraday, Experimental Researches in Electricity Art. 1339 (Taylor and Francis, London, 1839)

    Google Scholar 

  2. R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 179 (1854)

    Article  Google Scholar 

  3. R. Kohlrausch, Pogg. Ann. Phys. Chem. 91, 56 (1854)

    Article  Google Scholar 

  4. F. Kohlrausch, Pogg. Ann. Phys. Chem. 119, 337 (1863)

    Article  Google Scholar 

  5. F. Kohlrausch, Pogg. Ann. Phys. Chem. 128, 1, 207, 399 (1866)

    Google Scholar 

  6. C.A. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992)

    Article  CAS  Google Scholar 

  7. K.L. Ngai, J. Non Cryst. Solids 203, 232 (1996)

    Article  CAS  Google Scholar 

  8. K.L. Ngai, C.T. Moynihan, Bull. Mater. Res. Soc. 23(11), 51 (1998)

    Article  CAS  Google Scholar 

  9. J.K. Feng, L. Lu, M.O. Lai, J. Alloys Compd. 501, 255 (2010)

    Article  CAS  Google Scholar 

  10. C.P. Sandhya, B. John, C. Gouri, Ionics 20, 601 (2014)

    Article  CAS  Google Scholar 

  11. M. Park, X.C. Zhang, M.D. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195, 7904 (2010)

    Article  CAS  Google Scholar 

  12. Y.-C. Jung, S.-K. Kim, M.-S. Kim, J.-H. Lee, M.-S. Han, D.-H. Kim, W.-C. Shin, M. Ue, D.-W. Kim, J. Power Sources 293, 675 (2015)

    Article  CAS  Google Scholar 

  13. J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 116, 140 (2016)

    Article  CAS  Google Scholar 

  14. M. Freemantle, Chem. Eng. News 78, 37 (2000)

    Article  Google Scholar 

  15. R.D. Rogers, K.R. Seddon, Science 302, 792 (2003)

    Article  Google Scholar 

  16. T. Welton, Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459 (2004)

    Article  CAS  Google Scholar 

  17. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, 2nd edn. (Wiley-VCH, Weinheim, 2007)

    Book  Google Scholar 

  18. C. Roosen, P. Müller, L. Greiner, Appl. Microbiol. Biotechnol. 81, 607 (2008)

    Article  CAS  Google Scholar 

  19. H. Ohno, Electrochemical Aspects of Ionic Liquids (Wiley, New York, 2005)

    Book  Google Scholar 

  20. A. Lewandowski, A. Swiderska-Mocek, J. Power Sources 194, 601 (2009)

    Article  CAS  Google Scholar 

  21. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 8, 621 (2009)

    Article  CAS  Google Scholar 

  22. H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. A 373, 1 (2010)

    Article  CAS  Google Scholar 

  23. S. Werner, M. Haumann, P. Wasserscheid, Annu. Rev. Chem. Biomol. Eng. 1, 203 (2010)

    Article  CAS  Google Scholar 

  24. E.W. Castner Jr., J.F. Wishart, Chem. Phys. 132, 120901 (2010)

    Google Scholar 

  25. H. Tuller, Solid State Ion. 131, 143 (2000)

    Article  CAS  Google Scholar 

  26. J. Maier, Solid State Ion. 175, 7 (2004)

    Article  CAS  Google Scholar 

  27. J. Maier, Nat. Mater. 4, 805 (2005)

    Article  CAS  Google Scholar 

  28. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  CAS  Google Scholar 

  29. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321, 676 (2008)

    Article  CAS  Google Scholar 

  30. S. Kim, S. Yamaguchi, J.A. Elliott, Solid-state ionics in the 21st century: current status and future prospects. MRS Bull. 34, 900 (2009)

    Article  Google Scholar 

  31. P. Heitjans, M. Wilkening, MRS Bull. 34, 915 (2009)

    Article  CAS  Google Scholar 

  32. I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Solid State Ion. 176, 1319 (2005)

    Article  CAS  Google Scholar 

  33. K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Habasaki, J., León, C., Ngai, K.L. (2017). Introduction. In: Dynamics of Glassy, Crystalline and Liquid Ionic Conductors. Topics in Applied Physics, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-319-42391-3_1

Download citation

Publish with us

Policies and ethics