Skip to main content

Preview of Predictor Feedback and Delay Compensation

  • Chapter
  • First Online:
Predictor Feedback for Delay Systems: Implementations and Approximations

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 913 Accesses

Abstract

In this chapter we give a preview of the problems studied in the book: the design and analysis of predictor feedback laws for systems with delays, where the primary objective is to guarantee closed-loop stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krstic, M.: Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control 55(2.1), 287–303 (2010)

    Article  MathSciNet  Google Scholar 

  2. Karafyllis, I., Jiang, Z.-P.: Stability and Stabilization of Nonlinear Systems. Communications and Control Engineering. Springer, London (2011)

    Book  MATH  Google Scholar 

  3. Karafyllis, I., Pepe, P., Jiang, Z.-P.: Stability results for systems described by coupled retarded functional differential equations and functional difference equations. Nonlinear Anal. Theory Methods Appl. 71(7–8), 3339–3362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pepe, P.: The Lyapunov’s second method for continuous time difference equations. Int. J. Robust Nonlinear Control 13, 1389–1405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angeli, D., Sontag, E.D.: Forward completeness, unbounded observability and their Lyapunov characterizations. Syst. Control Lett. 38(4–5), 209–217 (1999)

    Article  MATH  Google Scholar 

  6. Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhäuser, Boston (2009)

    Book  MATH  Google Scholar 

  7. Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27, 869–879 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karafyllis, I.: Finite-time global stabilization by means of time-varying distributed delay feedback. SIAM J. Control Optim. 45(1), 320–342 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mazenc, F., Bliman, P.-A.: Backstepping design for time-delay nonlinear systems. IEEE Trans. Autom. Control 51, 149–154 (2006)

    Article  MathSciNet  Google Scholar 

  10. Mazenc, F., Malisoff, M., Lin, Z.: Further results on input-to-state stability for nonlinear systems with delayed feedbacks. Automatica 44, 2415–2421 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Teel, A.R.: Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Autom. Control 43(7), 960–964 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karafyllis, I., Krstic, M.: Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold. IEEE Trans. Autom. Control 57(5), 1141–1154 (2012)

    Article  MathSciNet  Google Scholar 

  13. Karafyllis, I., Krstic, M.: On the relation of delay equations to first-order hyperbolic partial differential equations. ESAIM Control Optim. Calc. Var. 20(3), 894–923 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Melchor-Aguilar, D., Kharitonov, V., Lozano, R.: Stability conditions for integral delay systems. Int. J. Robust Nonlinear Control 20, 1–15 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Melchor-Aguilar, D.: On stability of integral delay systems. Appl. Math. Comput. 217(7), 3578–3584 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Melchor-Aguilar, D.: Exponential stability of some linear continuous time difference systems. Syst. Control Lett. 61, 62–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River, NJ (1996)

    Google Scholar 

  18. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  19. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34, 435–443 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mirkin, L.: Are distributed-delay control laws intrinsically unapproximable? In: Proceedings of the 4th IFAC Workshop on Time-Delay Systems (TDS’03), Rocquencourt, France (2003)

    Google Scholar 

  21. Mirkin, L.: On the approximation of distributed-delay control laws. Syst. Control Lett. 51(5), 331–342 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mondie, S., Lozano, R., Collado, J.: Resetting process-model control for unstable systems with delay. In: Proceedings of the 40th IEEE Conference on Decision & Control, Orlando, Florida, USA, vol. 3, pp. 2247–2252 (2001)

    Google Scholar 

  23. Mondie, S., Dambrine, M., Santos, O.: Approximation of control laws with distributed delays: a necessary condition for stability. In: Proceedings of the IFAC Symposium on Systems, Structure and Control, Prague, Czech Republic (2001)

    Google Scholar 

  24. Mondie, S., Michiels, W.: Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. Autom. Control 48, 2207–2212 (2003)

    Article  MathSciNet  Google Scholar 

  25. Partington, J.R., Makila, P.M.: Rational approximation of distributed-delay controllers. Int. J. Control 78(16), 1295–1301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Richard, J.-P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Santos, O., Mondie, S.: Control laws involving distributed time delays: robustness of the implementation. In: Proceedings of the 2000 American Control Conference, vol. 4, pp. 2479–2480 (2000)

    Google Scholar 

  28. Van Assche, V., Dambrine, M., Lafay, J.F., Richard, J.P.: Some problems arising in the implementation of distributed-delay control laws. In: Proceedings of the 38th IEEE Conference on Decision & Control, Phoenix, Arizona, USA, pp. 4668–4672 (1999)

    Google Scholar 

  29. Van Assche, V., Dambrine, M., Lafay, J.F., Richard, J.P.: Implementation of a distributed control law for a class of systems with delay. In: Proceedings of the 3rd IFAC Workshop on Time-Delay Systems, USA, pp. 266–271 (2001)

    Google Scholar 

  30. Zhong, Q.-C., Mirkin, L.: Control of integral processes with dead time—Part 2: Quantitative analysis. IEE Proc. Control Theory Appl. 149, 291–296 (2002)

    Article  Google Scholar 

  31. Zhong, Q.-C.: Robust Control of Time-Delay Systems. Springer, London (2010)

    Google Scholar 

  32. Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control. Systems & Control: Foundations & Applications. Birkhäuser, Boston (2014)

    Book  MATH  Google Scholar 

  33. Sontag, E.D., Wang, Y.: New characterizations of input to state stability. IEEE Trans. Autom. Control 41, 1283–1294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Angeli, D., Ingalls, B., Sontag, E.D., Wang, Y.: Separation principles for input-output and integral-input to state stability. SIAM J. Control Optim. 43, 256–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, CH

About this chapter

Cite this chapter

Karafyllis, I., Krstic, M. (2017). Preview of Predictor Feedback and Delay Compensation. In: Predictor Feedback for Delay Systems: Implementations and Approximations. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-42378-4_1

Download citation

Publish with us

Policies and ethics