Skip to main content

Cytogenetics of Plasma Cell Neoplasms

  • Chapter
  • First Online:
  • 366 Accesses

Abstract

Plasma cell (PC) malignancies are characterized by the clonal evolution of complex cytogenetic and molecular genetic aberrations. Multiple myeloma (MM) is considered to be comprised of two basic cytogenetic subtypes: a hyperdiploid subtype consisting of a distinctive set of odd numbered trisomies, and a non-hyperdiploid subtype (hypodiploid) without trisomies and with one of several types of immunoglobulin heavy chain (IGH) rearrangements. In general the hypodiploid subgroup with t(4;14)(p16;q32) or t(14;16)(q32;q23) is considered higher-risk, while the hyperdiploid patients with t(11;14)(q13;q32) are considered a better prognostic group. During the genetic progression of PC disorders secondary chromosomal aberrations begin to accumulate, resulting in complex structural aberrations involving the c-MYC locus, deletions of 1p, 17p, and amplification of 1q21. To help facilitate the identification of high-risk patients the International Myeloma Working Group recommends the use of interphase FISH probes for the t(4;14) translocation and the copy number aberrations of 17p− and +1q21. In this chapter the relevant findings from both interphase and conventional metaphase studies will provide a framework for the understanding of the origin of cytogenetically more evolved subclones in PC disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2(3):175–87.

    Article  CAS  PubMed  Google Scholar 

  2. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48.

    Article  CAS  PubMed  Google Scholar 

  3. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmik K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy JD Jr. The molecular classification of multiple myeloma. Blood. 2006;108(6):2020–2028.

    Google Scholar 

  5. Walker BA, Leone PE, Jenner MW, Li C, Gonzalez D, Johnson DC, Ross FM, Davies FE, Morgan GJ. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood. 2006;108(5):1733–1743.

    Google Scholar 

  6. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, Stewart JP, Kordsmeier B, Randolph C, Williams DR, Xiao Y, Xu H, Epstein J, Anaissie E, Krishna SG, Cottler-Fox M, Hollmig K, Mohiuddin A, Pineda-Roman M, Tricot G, van Rhee F, Sawyer J, Alsayed Y, Walker R, Zangari M, Crowley J, Barlogie B. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84.

    Article  CAS  PubMed  Google Scholar 

  7. Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C, Leyvraz S, Michallet M, Yakoub-Agha I, Garderet L, Marit G, Michaux L, Voillat L, Renaud M, Grosbois B, Guillerm G, Benboubker L, Monconduit M, Thieblemont C, Casassus P, Caillot D, Stoppa AM, Sotto JJ, Wetterwald M, Dumontet C, Fuzibet JG, Azais I, Dorvaux V, Zandecki M, Bataille R, Minvielle S, Harousseau JL, Facon T, Mathiot C. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109(8):3489–96.

    Article  CAS  PubMed  Google Scholar 

  8. Avet-Loiseau H, Li C, Magrangeas F, Gouraud W, Charbonnel C, Harousseau J-L, Attal M, Marit G, Mathiot C, Facon T, Moreau P, Anderson KC, Campion L Munshi NC, Minvielle S. Prognostic significance of Copy-Number Alteration in multiple myeloma. J Clin Oncol. 2009;27(27):4585–4590.

    Google Scholar 

  9. Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD, Johnson DC, Gonzalez D, Paolo Dagrada G, Protheroe RKM, Konn ZJ, Stockley DM, Gregory WM, Davies FE, Ross FM, Morgan GJ. A compendium of myeloma associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;166(15):e56–65.

    Google Scholar 

  10. DeWald GW, Kyle RA, Hicks GA, Griepp PR. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia or amyloidosis. Blood. 1985;66(2):380–90.

    CAS  PubMed  Google Scholar 

  11. Sawyer JR, Waldron JA, Jagannath S, Barlogie B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet. 1995;82(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  12. Rajkumar SV, Greipp PR. Prognostic factors in multiple myeloma. Hematol Oncol Clin North Am. 1999;13(6):1295–314.

    Article  CAS  PubMed  Google Scholar 

  13. Zhan F, Sawyer J, Tricot G. The role of cytogenetics in multiple myeloma. Leukemia. 2006;20(9):1484–1486.

    Google Scholar 

  14. Dewald GW, Therneau T, Larson D, Lee YK, Fink S, Smoley S, Paternoster S, Adeyinka A, Kettering R, Van Dyke DL, Fonseca R, Kyle R. Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. Blood. 2005;106(10):3553–3558.

    Google Scholar 

  15. Kapoor P, Fonseca R, Rajlkumar V, Sinha S, Gertz MA, Stewart K, Bergsagel L, Lacy MQ, Dingli DD, Ketterling RP, Buadi F, Kyle RA, Witzig TE, Greipp PR, Dispenzieri A, Kumar S. Evidence for cytogenetic and fluorescence in situ hybridization risk stratification of newly diagnosed multiple myeloma in the era of novel therapies. Mayo Clin Poc. 2013;85(6):532–537.

    Google Scholar 

  16. Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet. 2011;204(1):3–12.

    Article  PubMed  Google Scholar 

  17. Nilsson T, Hoglund M, Lenhoff S, Rylander L, Turesson I, Westin J, Mitelman F, Johansson B. A pooled analysis of karyotypic patterns, breakpoints and imbalances in 783 cytogenetically abnormal multiple myelomas reveals frequently involved segments as well as significant age-and sex-related differences. Br J Haematol. 2003;120(6):960–9.

    Article  PubMed  Google Scholar 

  18. Chng WJ, Ketterling RP, Fonseca R. Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chrom Cancer. 2006;45(12):1111–20.

    Article  CAS  PubMed  Google Scholar 

  19. Smadja NV, Fruchart C, Isnard F, Louvet C, Dutel JL, Cheron N, Grange MJ, Monconduit M, Bastard C. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia. 1998;12(6):960–969.

    Google Scholar 

  20. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98(7):2229–2238.

    Google Scholar 

  21. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesti M, Davies FE, Drach J, Greipp PR, Kirsch IR, Kuehl WM, Hernandez JM, Minvielle S, Pilarski LM, Shaughnessy JD, Stewart AK, Avet-Loiseau H. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64(4):1546–58.

    Article  CAS  PubMed  Google Scholar 

  22. Drach J, Schuster J, Nowotny H, Angerler J, Rosenthal F, Fiegl M, Rothermundt C, Gsur A, Jager U, Heinz R. Multiple myeloma: high incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization. Cancer Res. 1995;55(17):3854–3859.

    Google Scholar 

  23. Tonon G. Moleular pathogenesis of multiple myeloma. Hematol Oncol Clin North Am. 2007;21(6):985–1006.

    Article  PubMed  Google Scholar 

  24. Bergsagel PL, Chesi M, NardinI E, Brents LA, Kirby SL, Kuehl WM. Promiscuous translocation into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA. 1996;93(24):13931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bergsagel PL, Kuehl WM. Chromosomal translocations in multiple myeloma. Oncogene. 2001;20(40):5611–5622.

    Google Scholar 

  26. Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood. 1996;88(2):674–81.

    CAS  PubMed  Google Scholar 

  27. Chesi M, Nardini E, Brents LA, Schröck E, Ried T, Kuehl WM, Bergsagel PL. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 1997;3:260–4.

    Article  Google Scholar 

  28. Tian E, Sawyer JR, Heuck CJ, Zhang Q, van Rhee F, Barlogie B, Epstein J. In multiple myeloma, 14q32 translocations are nonrandom chromosomal fusions driving high expression levels of the respective partner genes. Genes Chrom Cancer. 2014;53(7):549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23(26):6333–6338.

    Google Scholar 

  30. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, Belch AR, Pilarski LM. In multiple myeloma t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGRR3 expression. Blood. 2003;101(4):1520–9.

    Article  CAS  PubMed  Google Scholar 

  31. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, Dewald GW, Van Ness B, Van Wier SA, Henderson KJ, Bailey RJ, Greipp PR. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569–73.

    Article  CAS  PubMed  Google Scholar 

  32. Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ, Van Wier SA, Ahmann GJ, Fosseca R. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106(8):2837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Avet-Loiseau H, Facon T, Daviet A, Godon C, Rapp MJ, Harousseau JL, Grosbois B, Bataille R. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undertermined significance delineate a multistep process for the oncogensis of multiple myeloma. Cancer Res. 1999;59(18):4546–4550.

    Google Scholar 

  34. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen T, Schröck E, Ried T, Kuehl WM. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood. 1998;91(12):4457–63.

    CAS  PubMed  Google Scholar 

  35. Jenner MW, Leone PE, Walker BA, Ross FM, Johnson DC, Gonzalez D, Chiecchio L, Dachs Cabanas E, Dagrada GP, Nightingale M, Protheroe RK, Stockley D, Else M, Dickens NJ, Cross NC, Davies FE, Morgan GJ. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood. 2007;110(9):3291–30.

    Google Scholar 

  36. Rajkumar SV, Gupta V, Fonseca R, Dispenzieri A, Gonsalves WI, Larson D, Ketterling RJ, Lust JA, Kyle RA, Kumar SK. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leuk. 2013;27(8):1738–44.

    Google Scholar 

  37. Kaufmann H, Ackermann J, Baldia C, Nösslinger T, Wieser R, Seidl S, Sagaster V, Gisslinger H, Jäger U, Pfeilstöcker M, Zielinski C, Drach J. Both IGH translocations and chromosome 13q deletions are early events in monoclonal gammopathy of undetermined significance and do not evolve during transition to multiple myeloma. Leukemia. 2004;11:1879–82.

    Article  Google Scholar 

  38. Bergsagel PL, Chesi MV. Molecular classification and risk stratification of myeloma. Hematol Oncol. 2013;3(Suppl 1):38–41.

    Article  Google Scholar 

  39. López-Corral L, Gutiérrez NC, Vidriales MB, Mateos MV, Rasillo A, García-Sanz R, Paiva B. San Miguel JF. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res. 2011;17(7):1692–700.

    Article  PubMed  Google Scholar 

  40. Gabrea A, Martelli ML, Qi Y, Roschke A, Barlogie B, Shaughnessy JD Jr, Sawyer JR, Kuehl WM. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chrom Cancer. 2008;47(7):573–590.

    Google Scholar 

  41. Walker BA, Wardell CP, Brioli A, Boyle E, Kaiser MF, Begum DB, Dahir NB, Johnson DC, Ross FM, Davies FE, Morgan GJ. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J. 2014;4:e191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Affer M, Chesi M, Chen WD, Keats JJ, Demchenko YN, Tamizhmani K, Garbitt VM, Riggs DL, Brents LA, Roschke AV, Van Wier S, Fonseca R, Bergsagel PL, Kuehl WM. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia. 2014;28(8):1725–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sawyer JR, Tricot G, Mattox S, Jagannath S, Barlogie B. Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood. 1998;91(5):1732–41.

    CAS  PubMed  Google Scholar 

  44. Wu KL, Beverloo B, Lokhorst HM, Segeren CM, van der Holt B, Steijaert MM, Westveer PH, Poddighe PJ, Verhoef GE, Sonneveld P. Dutch-Belgian Haemato-Oncology Cooperative Study Group (HOVON); Dutch Working Party on Cancer Genetics and Cytogenetics (NWCGC). Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor of the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Haematol. 2007;136(4):615–623.

    Google Scholar 

  45. Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH, Naucke S, Sawyer JR. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not the other karyotype abnormalities. Blood. 1995;86(11):4250–6.

    CAS  PubMed  Google Scholar 

  46. Tricto G, Sawyer JR, Jagannath S, Desikan KR, Siegel D, Naucke S, Mattox S, Bracy D, Munshi N, Barlogie B. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol. 1997;15(7):2659–2666.

    Google Scholar 

  47. Perez-Simon JA, Garcia-Sanz R, Tabernero MD, Almeida J, Gonzalez M, Fernandez-Calvo J, Moro Mj, Hernandez JM, San Miguel JF, Orfao A. Prognostic value of numerical chromosome aberrations in multiple myeloma: a FISH analysis of 15 different chromosomes. Blood. 1998;91(9):3366–3371.

    Google Scholar 

  48. Shaugnessy JD, Tian E, Sawyer J, Bumm K, Landes R, Badros A, Morris C, Tricot G, Epstein J, Barlogie B. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood. 2000;96(4):1505–11.

    Google Scholar 

  49. Drach J, Ackermann J, Fritz E, Kromer E, Schuster R, Gisslinger H et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional–dose chemotherapy. Blood. 1998;92(1):803–809.

    Google Scholar 

  50. Cremer FW, Bila J, Buck I, Kartal M, Hose D, Ittrich C, Benner A, Raab MS, Theil A-C, Moos M, Goldschmidt H, Bartram CR, Jauch A. Delineation of distinct subgroups of multiple myeloma and a model for clonal evolution based on interphase cytogenetics. Genes Chrom Cancer. 2005;44(2):194–203.

    Article  CAS  PubMed  Google Scholar 

  51. Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, González-Paz N, Winkler JM, Kyle RA, Gertz MA, Witzig TE, Dispenzieri A, Lacy MQ, Rajkumar SV, Lust JA, Greipp PR, Fonseca R. Chromosome abnormalities clustering and its implication for pathogenesis and prognosis in myeloma. Leukemia. 2003;17(2):427–26.

    Article  CAS  PubMed  Google Scholar 

  52. Chang H, Ning Y, Qi X, Yeung J, Xu W. Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol. 2007;(1):139:51–54.

    Google Scholar 

  53. Boyd KD, Ross FM, Walker BA, Wardell CP, Tapper WJ, Chiecchio L, Dagrada G, Konn ZJ, Gregory WM, Jackson GH, Child JA, Davies FE, Morgan GJ. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res. 2011;17(24):7776–84.

    Article  CAS  PubMed  Google Scholar 

  54. Hebraud B, Leleu X, Lauwers-Cances V, Roussel M, Caillot D, Marit G, Karlin L, Hulin C, Gentil C, Guilhot F, Garderet L, Lamy T, Brechignac S, Pegourie B, Jaubert J, Dib M, Stoppa AM, Sebban C, Fohrer C, Fontan J, Fruchart C, Macro M, Orsini-Piocelle F, Lepeu G, Sohn C, Corre J, Facon T, Moreau P, Attal M, Avet-Loiseau H. Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia. 2014;3:675–9.

    Article  Google Scholar 

  55. Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G, Gossen L, Swanson CM, Binz RL, Barlogie B, Saughnessy J. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12~23 amplicon. Br. J Haematol. 2009;147(4):484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B, Stewart JP, Zhan F, Khatry D, Protopopova M, Protopopov A, Sukhdeo K, Hanamura I, Stephens O, Barlogie B, Anderson KC, Chin L, Shaughnessy JD Jr, Brennan C, Depinho RA. High-resolution genomic profiles defines distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9(4):313–325.

    Google Scholar 

  57. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, Hollmig K, Zangarri M, Pineda-Roman M, van Rhee F, Cavallo F, Burington B, Crowley J, Tricot G, Barlogie B, Shaughnessy JD Jr. Frequent gain of chromosome band 1q21 in plasma cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem cell transplantations. Blood. 2006;108(5):1724–32.

    Google Scholar 

  58. Treon SP, Maimonis P, Bua D, Young G, Raje N, Mollick J, Chauhan D, Tai YT, Hideshima T, Shima Y, Hilgers J, von Mensdorff-Pouilly S, Belch AR, Pilarski LM, Anderson KC. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood. 2000;96(9):3147–53.

    CAS  PubMed  Google Scholar 

  59. Zhang B, Gojo I, Fenton RG. (2002) Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002;99(6):1885–1893.

    Google Scholar 

  60. Inoue J, Otsuki T, Hirasawa A, Imoto I, Matsuo Y, Shimizu S, Taniwaki M, Inazawa J. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Path. 2004;165(1):71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Le Baccon P, Leroux D, Dascalescu C, Duley S, Marais D, Esmenjaud E, Sotto JJ, Callanan M. Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma. Genes Chrom Cancer. 2001;32(3):250–64.

    Article  PubMed  Google Scholar 

  62. Sawyer JR, Tricot G, Lukacs JL, Binz RL, Tian E, Barlogie B, Shaughnessy J Jr. Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q. Genes Chrom Cancer. 2005;42(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  63. Fournier A, Florin A, Lefebvre C, Solly F, Leroux D, Callanan MB. Genetics and epigenetics of 1q rearrangments in hematological malignancies. Cytogenet Genome Res. 2007;118(2–4):320–7.

    Article  CAS  PubMed  Google Scholar 

  64. Sawyer JR, Tian E, Heuck CJ, Epstein J, Johann DJ, Swanson CM, Lukacs JL, Johnson M, Litchi-Binz R, Boast A, Sammartino G, Usmani S, Zangari M, Waheed S, van Rhee F, Barlogie B. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood. 2014;123(16):2504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD, Neri A, Davies FE, Ross FM, Morgan GJ. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood. 2011;117(2):553–62.

    Article  CAS  PubMed  Google Scholar 

  67. Heuck CJ, Mehta J, Bhagat T, Gundabolu K, Yu Y, Khan S, Chrysofakis G, Schinke C, Tariman J, Vickrey E, Pulliam N, Nischal S, Zhou L, Bhattacharyya S, Meagher R, Hu C, Maqbool S, Suzuki M, Parekh S, Reu F, Steidl U, Greally J, Verma A, Singhal SB. Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis. J Immunol. 2013;190(6):2966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bollati V, Fabris S, Pegoraro V, Ronchetti D, Mosca L, Deliliers GL, Motta V, Bertazzi PA, Baccarelli A, Neri A. Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcino. 2009;8:1330–5.

    Article  Google Scholar 

  69. Sawyer JR, Tian E, Heuck CJ, Johann DJ, Epstein J, Swanson CM, Lukacs JL, Binz RL, Johnson M, Sammartino G, Zangari M, Davies FE, van Rhee F, Morgan GJ, Barlogie B. Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood. 2015;125(24):3756–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, Van Wier S, Blackburn PR, Baker AS, Dispenzieri A, Kumar S, Rajkumar SV, Carpten JD, Barrett M, Fonseca R, Stewart AK, Bergsagel PL. Clonal competition with alternating dominance in multilple myeloma. Blood. 2012;120(5):1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Magrangeas F, Avet-Loiseau H, Gouraud W, Lodé L, Decaux O, Godmer P, Garderet L, Voillat L, Facon T, Stoppa AM, Marit G, Hulin C, Casassus P, Tiab M, Voog E, Randriamalala E, Anderson KC, Moreau P, Munshi NC, Minvielle S. Minor clone provides a reservoir for relapse in multiple myeloma. Leuk. 2013;27(2):473–81.

    Article  CAS  Google Scholar 

  72. Boyd KD, Ross FM, Chiecchio L, Dagrada GP, Konn ZJ, Tapper WJ, Walker BA, Wardell CP, Gregory WM, Szubert AJ, Bell SE, Child JA, Jackson GH, Davies FE, Morgan GJ. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;2:349–55.

    Article  Google Scholar 

  73. Pawlyn C, Melchor L, Murison A, Wardell CP, Brioli A, Boyle EM, Kaiser MF, Walker BA, Begum DB, Dahir NB, Proszek P, Gregory WM, Drayson MT, Jackson GH, Ross FM, Davies FE, Morgan GJ. Coexistent hyperdiploidy does not abrogate poor prognosis in myeloma with adverse cytogenetics and may precede IGH translocations. Blood. 2015;125(5):831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chng WJ, Dispenzieri A, Chim C-S, Fonseca R, Goldschmidt H, Lentzch S, Munshi N, Palumbo A, Miguel JS, Sonneveld P, Cavo M, Usmani S, Durie BGM, Avet-Loiseau H. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269–77.

    Article  CAS  PubMed  Google Scholar 

  75. Nilsson T, Nilsson L, Lenhoff S, Rylander L, Astrand-Grundstrom I, Strombeck B, Hoglund M, Turesson I, Westin J, Mitelman F, Jacobsen SEW, Johansson B. MDS/AML-associated cytogenetic abnormalities in multiple myeloma and monoclonal gammopathy of undetermined significance: Evidence for frequent de novo occurrence and multipotent stem cell involvement of del(20q). Genes Chrom Cancer. 2004;41(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  76. Govindarajan R, Jagannath S, Flick JT, Vesole DH, Sawyer J, Barlogie B, Tricot G. Preceding standard therapy is the likely cause of MDS after autotransplants for multiple myeloma. Br J Haematol. 1996;95(2):349–53.

    Article  CAS  PubMed  Google Scholar 

  77. Jacobson J, Barlogie B, Shaughnessy J, Drach J, Tricot G, Fassas A, Zangari M, Giroux D, Crowley J, Hough A, Sawyer J. MDS-type abnormalities with myeloma signature karyotype (MM-MDS): only 13% 1-year survival despite tandem transplants. Br J Haematol. 2003;122(3):430–40.

    Article  PubMed  Google Scholar 

  78. Usmani SZ, Sawyer J, Rosenthal A, Cottler-Fox M, Epstein J, Yaccoby S, Sexton R, Hoering A, Singh Z, Heuck CJ, Waheed S, Chauhan N, Johann D, Abdallah AO, Muzaffar J, Petty N, Bailey C, Crowley J, van Rhee F, Barlogie B. Risk factors for MDS and acute leukemia following total therapy 2 and 3 for multiple myeloma. Blood. 2013;121(23):4753–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barlogie B, Tricot G, Haessler J, van Rhee F, Cottler-Fox M, Anissie E, Waldron J, Pineda-Roma M, Thertulien R, Zangari M, Hollmig K, Mohiuddin A, Alsayed Y, Hoering A, Crowley J, Sawyer J. Cytogenetically defined myelodysplasia after melphalan-based autotransplantation for multiple myeloma linked to poor hematopoietic stem-cell mobilization: the Arkansas experience in more than 3000 patients treated since 1989. Blood. 2008;111(1):94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The interphase FISH images in Fig. 4.1 were kindly provided by Dr. Erming Tian, Myeloma Institute, University of Arkansas for Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Sawyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sawyer, J.R. (2016). Cytogenetics of Plasma Cell Neoplasms. In: Lorsbach, R., Yared, M. (eds) Plasma Cell Neoplasms. Springer, Cham. https://doi.org/10.1007/978-3-319-42370-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42370-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42368-5

  • Online ISBN: 978-3-319-42370-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics