Skip to main content

Photonic Integrated Circuits on InP

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

This chapter is devoted to photonic integrated circuits (PIC) on InP semiconductor basis. This materials platform is capable of monolithically integrating not only passive optical waveguide and receiver (Rx) devices but also transmitter (Tx) type structures, in particular optical amplifiers and lasers. In the first part the principal integration approaches of these diverse device structures will be addressed: vertical integration schemes relying on evanescent optical coupling between vertically stacked device levels; and lateral integration schemes exploiting in-plane optical coupling of the optical devices. In the latter case, butt-joint coupling, selective-area-growth, and quantum-well intermixing are being used, all of them geared to accomplish lateral band gap engineering. In the following section, recent examples of PICs based on proprietary technology solutions will be given. The second part of this chapter discusses generic photonic integration copying the foundry model successfully established in the electronics world. In this model, using defined building blocks, PIC design and manufacturing are strictly separated, thereby facilitating open access to this technology. As an example of such a generic platform, the TxRx technology developed by Fraunhofer HHI will be outlined. Selected building blocks will be described, and representative PICs made on multi-project wafer runs will be shown highlighting the viability of the foundry approach. In addition, the supply chain required for successful adoption of the foundry model will be briefly covered, including the design software environment, testing and wafer validation capabilities, and also generic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P.K. Tien, Integrated optics and new wave phenomena in optical waveguide. Rev. Mod. Phys. 49, 361–420 (1977)

    ADS  Google Scholar 

  2. J.J. Hsieh, Room temperature operation of InGaAsP/InP double heterostructure diode lasers emitting at 1.1 μm. Appl. Phys. Lett. 28, 283–285 (1976)

    ADS  Google Scholar 

  3. T.L. Koch, U. Koren, R.P. Gnall, F.S. Choa, F. Hernandez-Gil, C.A. Burrus, M.G. Yung, M. Oron, B.I. Miller, GaInAs/GaInAsP multi-quantum-well integrated heterodyne receiver. Electron. Lett. 25, 1621–1623 (1989)

    ADS  Google Scholar 

  4. R. Kaiser, D. Trommer, F. Fidorra, H. Heidrich, S. Malchow, D. Franke, W. Passenberg, W. Rehbein, H. Schroeter-Janssen, R. Stenzel, G. Unterboersch, Monolithically integrated polarization diversity heterodyne receivers on GaInAsP/InP. Electron. Lett. 30, 1446–1447 (1994)

    ADS  Google Scholar 

  5. M.G. Young, U. Koren, B.I. Miller, M. Chien, T.L. Koch, D.M. Tennant, K. Feder, K. Dreyer, G. Raybon, Six wavelength laser array with integrated amplifier and modulator. Electron. Lett. 31, 1835–1836 (1995)

    ADS  Google Scholar 

  6. P. Runge, G. Zhou, F. Ganzer, S. Mutschall, A. Seeger, Waveguide integrated InP-based photodetector for 100 Gbaud applications operating at wavelengths of 1310 nm and 1550 nm, in 41st European Conference on Optical Communication (ECOC’15), Valencia, Spain (2015), Tu.1.1.3

    Google Scholar 

  7. R. Zhang, P. Runge, G. Zhou, R. Klötzer, D. Pech, H.-G. Bach, D. Perez-Galacho, A. Ortega-Murnox, R. Halir, I. Molina-Fernandez, 56 Gbaud DP-QPSK receiver module with a monolithic integrated PBS and 90° hybrid InP chip, in Proc. 26th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’14), Montpellier, France (2014), paper We-B1-4

    Google Scholar 

  8. J.B.D. Soole, M.R. Amersfoot, H.P. Blanc, N.C. Andreakis, A. Rajhel, C. Caneau, Polarization-independent monolithic eight-channel 2 nm spacing WDM detector based on compact arrayed waveguide demultiplexer. Electron. Lett. 31, 1289–1291 (1995)

    ADS  Google Scholar 

  9. S. Chandrasekhar, M. Zirngibl, A.G. Dentai, C.H. Joyner, F. Storz, C.A. Burrus, L.M. Lunardi, Monolithic eight-wavelength demultiplexed receiver for dense WDM applications. IEEE Photonics Technol. Lett. 7, 1342–1344 (1995)

    ADS  Google Scholar 

  10. M. Baier, R. Broeke, F. Soares, M. Gruner, A. Seeger, M. Moehrle, N. Grote, M. Schell, 100-channel WDM Rx-type PIC for use of low cost and low power consumption electronics, in 40th European Conference on Optical Communication (ECOC’14), Cannes, France (2014), We.2.4.5

    Google Scholar 

  11. www.gcsincorp.com; S. Wang, Can foundries underpin the success of the PIC? Presentation given at PIC International Conference, Brussels, 1–2 March 2016

  12. V. Tolstikhin, Regrowth-free multi-guide vertical integration in InP for optical communications, in Proc. 23rd Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’11), Berlin, Germany (2011), pp. 363–366

    Google Scholar 

  13. V. Tolstikhin, S. Ristic, K. Pimenov, C. Watson, M. Florjanczyk, 100 Gb/s multi-guide vertical integration transmitter PIC in InP for fiber-optics interconnects, in 39th European Conference on Optical Communication (ECOC’13), London, UK (2013), Th.2.B.3

    Google Scholar 

  14. V. Tolstikhin, F. Wu, Y. Logvin, S. Ristic, Y. Tang, K. Pimenov, A. Khajooeizadeh, 100 Gb/s receiver photonic integrated circuits in InP for applications in fiber-optics interconnects, in Proc. OSA Conf. on Integrated Photonics Research, Silicon and Nano-Photonics (IPR’13), Rio Grande, Puerto Rico (2013), IW5A.4

    Google Scholar 

  15. S. Ristic, M. Florjanczyk, M. Lebby, Optoelectronic integrated circuits (OEICs) for 100G Ethernet and coherent networks based on multi-guide vertical integration platform, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper Tu3H.6

    Google Scholar 

  16. F.M. Soares, K. Janiak, J. Kreissl, M. Moehrle, N. Grote, Semi-insulating substrate based generic InP photonic integration platform, in Proc. SPIE 8767, Integrated Photonics: Materials, Devices, and Applications II, May 22, 2013, 87670M. doi:10.1117/12.2017431.

    Chapter  Google Scholar 

  17. Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck, X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel, M.K. Smit, Butt-joint interfaces in InP/InGaAsP waveguides with very low reflectivity and low loss, in Proc. Symp. IEEE/LEOS Benelux Chapter, Mons, Belgium (2005), pp. 89–92

    Google Scholar 

  18. J. Wallin, G. Landgren, K. Streubel, S. Nilsson, M. Öberg, Selective area regrowth of butt-joint coupled waveguides in multi-section DBR lasers. J. Cryst. Growth 124, 741–746 (1992)

    ADS  Google Scholar 

  19. H. Roehle, H. Schroeter-Janssen, R. Kaiser, Large- and selective-area LP-MOVPE growth of InGaAsP-based bulk and QW layers under nitrogen atmosphere. J. Cryst. Growth 170, 109–112 (1997)

    ADS  Google Scholar 

  20. S.C. Davies, R.A. Griffin, A.J. Ward, N.D. Whitbread, I. Davies, L. Langley, S. Fourte, J. Mo, Y. Xu, A. Carter, Narrow linewidth, high power, high operating temperature digital supermode distributed Bragg reflector laser, in 39th European Conference on Optical Communication (ECOC’13), London, UK (2013), Th.1.B.3

    Google Scholar 

  21. I.B. Betty, Strongly-guided InP/InxGa1 − xAsyP1 − y Mach-Zehnder modulator for optical communications. Ph.D thesis, University of Waterloo, Ontario, Canada (2005); see also: K. Anderson, I. Betty, Indium phosphide MZ chips are suited to long-reach metro, LaserFocusWorld 03/01/2003

    Google Scholar 

  22. H. Kobayashi, M. Ekawa, N. Okazaki, O. Aoki, S. Ogita, H. Soda, Tapered thickness MQW waveguide BH MQW lasers. IEEE Photonics Technol. Lett. 6, 1080–1081 (1994)

    ADS  Google Scholar 

  23. M.S. Kim, C. Caneau, E. Colas, R. Bhat, Selective area growth of InGaAsP by OMVPE. J. Cryst. Growth 123, 69–74 (1992)

    ADS  Google Scholar 

  24. J. Décobert, N. Dupuis, P.Y. Lagrée, N. Lagay, A. Ramdane, A. Ougazzaden, F. Poingt, C. Cuisin, C. Kazmierski, Modelling and characterization of AlGaInAs and related materials using selective area growth by metal-organic vapor-phase epitaxy. J. Cryst. Growth 298, 28–31 (2007)

    ADS  Google Scholar 

  25. J. Decobert, G. Binet, A.D.B. Maia, P.Y. Lagree, C. Kazmierski, AlGaInAs MOVPE selective area growth for photonic devices. Adv. Opt. Techn. 4, 167–177 (2015)

    Google Scholar 

  26. R. Guillamet, N. Lagay, C. Mocuta, G. Carbone, P.Y. Lagrée, J. Decobert, Analysis and optimization by micro-beam X-ray diffraction of AlGaInAs heterostructures obtained by Selective Area Growth for optoelectronic applications, in Proc. 23rd Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’11), Berlin, Germany (2011), pp. 386–389

    Google Scholar 

  27. http://www.paradigm.jeppix.eu, newsletter#4

  28. C. Kazmierski, D. Carrara, K. Lawniczuk, G. Aubin, J.G. Provost, R. Guillamet, 12.5 GB operation of a novel monolithic 1.55 μm BPSK source based on prefixed optical phase switching, in Opt. Fiber Commun. Conf. (OFC’13), Anaheim, CA, USA (2013), Techn. Digest, paper OW4J.8

    Google Scholar 

  29. C. Kazmierski, N. Chimot, F. Jorge, A. Konczykowska, F. Blache, J. Decobert, F. Alexandre, A. Garreau, R. da Silva, 80 Gb/s multi-level BPSK experiment with an InP monolithic source based on prefixed optical phase switching, in Proc. 26th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’14), Montpellier, France (2014), Th-B2-1

    Google Scholar 

  30. H. Mardoyan, O. Bertran-Pardo, P. Jennevé, G. de Valicourt, M.A. Mestre, S. Bigo, C. Kazmierski, N. Chimot, A. Steffan, J. Honecker, R. Zhang, P. Runge, A. Richter, C. Arellano, A. Ortega-Moñux, I. Molina Fernandez, PIC-to-PIC experiment at 130 Gb/s based on a monolithic transmitter using switching of prefixed optical phases and a monolithic coherent receiver, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, post-deadline paper Th5C

    Google Scholar 

  31. J. Decobert, G. Binet, A.D.B. Maia, P.Y. Lagree, C. Kazmierski, AlGaInAs MOVPE selective area growth for photonic devices. Adv. Opt. Techn. 4, 167–177 (2015)

    Google Scholar 

  32. R.W. Glew, A.T.R. Briggs, P.D. Greene, E.M. Allen, The influence of the substrate on the thermal stability of InGaAs/InGaAsP quantum wells, in Proc. 4th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’92), Newport, USA (1992), pp. 234–237

    Google Scholar 

  33. N. Grote, The III–V materials for Infra-red devices, in Materials for Optoelectronics, ed. by M. Quillec (Kluwer Academic, Norwell, 1996), p. 173. ISBN 0-7923-9665-0

    Google Scholar 

  34. S. Charbonneau, E. Kotels, P. Poole, J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. Goldberg, P. Piva, I. Mitchell, Photonic integrated circuits fabricated using ion implantation. IEEE J. Sel. Top. Quantum Electron. 4, 772–793 (1998)

    ADS  Google Scholar 

  35. E.J. Skogen, J.W. Raring, G.B. Morrison, C.S. Wang, V. Lal, M.L. Masanovic, L. Coldren, Monolithically integrated active components: a quantum-well intermixing approach. J. Sel. Top. Quantum Electron. 11, 343–355 (2005)

    Google Scholar 

  36. J.H. Marsh, Quantum well intermixing. Semicond. Sci. Technol. 8, 1136–1155 (1993)

    ADS  Google Scholar 

  37. J.W. Raring, L.A. Johansson, E.J. Skogen, M.N. Sysak, H.N. Poulsen, S.P. DenBaars, L.A. Coldren, 40-Gb/s widely tunable low-drive-voltage electro-absorption-modulated transmitter. J. Lightwave Technol. 25, 239–248 (2007)

    ADS  Google Scholar 

  38. C. Wang, E. Skogen, J. Raring, G. Morrison, L. Coldren, Short-cavity 1.55 μm DBR lasers integrated with high-speed EAM modulators, in Proc. 19th IEEE Semiconductor Laser Conf., Matsueshi, Japan (2004)

    Google Scholar 

  39. V. Lal, M.L. Masanovic, E.J. Skogen, J. Raring, J.A. Summers, L.A. Coldren, Quantum-well-intermixed monolithically integrated widely tunable all-optical wavelength converter operating at 10 Gb/s. IEEE Photonics Technol. Lett. 17, 1689–1691 (2005)

    ADS  Google Scholar 

  40. D. Hofstetter, B. Maisenhölder, H.P. Zappe, Quantum-well intermixing for fabrication of lasers and photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 4, 794–802 (1998)

    ADS  Google Scholar 

  41. L.A. Coldren, S.C. Nicholes, L. Johansson, S. Ristic, R.S. Guzzon, E.J. Norberg, U. Krishnamachari, High performance InP-based photonic ICs – a tutorial. J. Lightwave Technol. 29, 554–570 (2011)

    ADS  Google Scholar 

  42. M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J.v.d. Tol, B. Smalbrugge, T. de Vries, E.J. Geluk, J. Bolk, R. van Veldhoven, L. Augistin, P. Thijs, D. d’Àgostino, H. Rabbani, K. Lawnizcuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Meloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, D. Robbins, An introduction to InP based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014)

    ADS  Google Scholar 

  43. H. Debregeas, J. Decobert, N. Lagay, R. Guillamet, D. Carrara, O. Patard, C. Kazmierski, R. Brenot, Selective-area-growth technology for flexible active building blocks, in Conf. on Integrated Photonics Research, Silicon and Nano-Photonics (IPR’12), Colorado Springs, USA (2012), 0SA Techn. Dig., paper IM2A.3

    Google Scholar 

  44. A.M. Weiner, Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 294, 3669–3692 (2011)

    ADS  Google Scholar 

  45. M.S. Tahvili, S. Latkovski, E. Smalbrugge, X.J.M. Leijtens, P.J. Williams, M.J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M.K. Smit, E.A.J.M. Bente, InP-based integrated optical pulse shaper: demonstration of chirp compensation. IEEE Photonics Technol. Lett. 25, 450–453 (2013)

    ADS  Google Scholar 

  46. Q. Cheng, M. Ding, A. Wonfor, J. Wei, R.V. Penty, I.H. White, The feasibility of building a \(64 \times 64\) port count SOA-based optical switch, in Proc. Photonics in Switching 2015, Florence, Italy (2015), pp. 199–201

    Google Scholar 

  47. J. Zhu, S. Pachnike, M. Lawin, S. Mayne, A. Wonfor, R.V. Penty, R. Cush, R. Turner, P. Firth, M. Wale, I.H. White, J.P. Elbers, First demonstration of a WDM-PON system using full C-band tunable SFP+ transceiver modules. J. Opt. Commun. Netw. 7, A28–A36 (2015)

    Google Scholar 

  48. S. Farwell, P. Aivaliotis, Y. Qian, P. Bromley, R. Griggs, J. Ng Yew Hoe, C. Smith, S. Jones, InP coherent receiver chip with high performance and manufacturability for CFP2 modules, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper W1I.6

    Google Scholar 

  49. Y. Tang, F. Wu, Y. Logvin, J. Lei, G. Liu, K. Luo, C. Watson, K. Pimenov, Y. Bai, D. Masson, V. Tolstikhin, H. Xie, Y. Hua, High performance DP-QPSK receiver module incorporating InP-based Integrated coherent detection chip, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper M3C.3

    Google Scholar 

  50. P. Runge, S. Schubert, A. Seeger, K. Janiak, J. Stephan, D. Trommer, N.L. Nielsen, Monolithic InP receiver chip with a variable optical attenuator for colorless WDM detection. IEEE Photonics Technol. Lett. 26, 349–351 (2014)

    ADS  Google Scholar 

  51. M.L. Masanovic, Integrated photonic coherent receivers, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper W1J.4

    Google Scholar 

  52. P. Runge, G. Zhou, F. Ganzer, S. Seifert, S. Mutscall, A. Seeger, Polarization insensitive coherent receiver PIC for 100 Gbaud communication, in Opt. Fiber Commun. Conf. (OFC’16), Anaheim, CA, USA (2016), Techn. Digest, Tu2D.5

    Google Scholar 

  53. http://www.ict-astron.eu

  54. S. Shimizu, G. Cincotti, N. Wada, Demonstration and performance investigation of all-optical OFDM systems based on arrayed waveguide gratings. Opt. Express 20, B525–B534 (2012)

    Google Scholar 

  55. R. Nagarajan, M. Kato, D. Lambert, P. Evans, S. Corzine, V. Lal, J. Rahn, A. Nilsson, M. Fisher, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, D. Krause, H. Sun, K.-T. Wu, M. Ziari, T. Butrie, M. Reffle, M. Mitchell, F. Kish, D. Welch, Terabit/s class InP photonic integrated circuits. Semicond. Sci. Technol. 27, 094003 (2012)

    ADS  Google Scholar 

  56. F. Kish, M. Reffle, T. Butie, M. Ziari, P. Evans, S. Corzine, H.S. Tsai, D. Pavinski, J. Zhang, J. Tang, A. Dentai, R. Muthiah, J. Pleumeekers, D. Lambert, M. Missey, V. Lal, M. Fisher, S. Murthy, R. Salvatore, S. Demars, A. James, J. Rahn, S. Kumar, M. Mitchell, J. Zhang, T. Liu, R. Nagarajan, D. Welch, 500 Gb/s and beyond photonic integrated circuit module, in Opt. Fiber Commun. Conf. (OFC’15), San Francisco, CA, USA (2014), Techn. Digest, paper W3I.1

    Google Scholar 

  57. M. Smit, X. Leijtens, E. Bente, J. van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, M. Schell, Generic foundry model for InP-based photonics. IET Optoelectron. 5, 187–194 (2011)

    Google Scholar 

  58. http://www.europic.jeppix.eu

  59. F.M. Soares, M.F. Baier, M. Moehrle, N. Grote, Technology platform for transmit and receive type photonic integrated circuits, in Proc. 26th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’14), Montpellier, France (2014), Mo-B1-5

    Google Scholar 

  60. F.M. Soares, M. Baier, T. Gaertner, D. Franke, M. Moehrle, N. Grote, Development of a versatile InP-Based photonic platform based on butt-joint integration, in Conference on Lasers and Electro-Optics/Pacific Rim, Busan, S. Korea (Optical Society of America, Washington, 2015), paper 26J2_1

    Google Scholar 

  61. M.F. Baier, F.M. Soares, T. Gaertner, M. Moehrle, N. Grote, C. Meuer, 50 Gbit/s PAM-4 transmission using a directly modulated laser made on generic InP integration platform, in Proc. 27th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’15), St. Barbara, USA (2015), paper WE2O7.3

    Google Scholar 

  62. M. Baier, F.M. Soares, W. Passenberg, T. Gaertner, M. Moehrle, N. Grote, Polarization beam splitter building block for InP based generic photonic integrated circuits, in Proc. 26th Internat. Conf. Indium Phosphide Relat. Mater. (IPRM’14), Montpellier, France (2014), Tu-D3-4

    Google Scholar 

  63. D.O. Dzibrou, J.J.G.M. van der Tol, M.K. Smit, Improved fabrication process of low-loss and efficient polarization converters in InP-based photonic integrated circuits. Opt. Lett. 38, 1061–1063 (2013)

    ADS  Google Scholar 

  64. M. Baier, F.M. Soares, M. Moehrle, N. Grote, M. Schell, A new approach to designing polarization rotating waveguides, in 18th Europ. Conf. on Integrated Optics (ECIO’16), Warsaw, Poland (2016), paper o-37

    Google Scholar 

  65. M. Baier, F.M. Soares, T. Gaertner, R. Weiser, M. Moehrle, N. Grote, M. Schell, Highly fabrication tolerant polarization converter for generic photonic integration technology, in Proc. 28th Intern. Conf. Indium Phosphide Rel. Mat. (CSW/IPRM’16), Toyama, Japan (2016), paper MoC3-6

    Google Scholar 

  66. http://www.jeppix.eu

  67. S. Liu, D. Lu, L. Zhao, D. Zhou, W. Wang, R. Broeke, C. Ji, Synchronized operation of a monolithically integrated AWG-based multichannel harmonically mode-locked laser, in Opt. Fiber Commun. Conf. (OFC’16), Anaheim, CA, USA (2016), paper W4H.4

    Google Scholar 

  68. N. Andriolli, P. Velha, P. Tommasino, M. Chiesa, M.B. Preve, A. Trifiletti, M. Romagnoli, G. Contestabile, An InP monolithically integrated multiwavelength transmitter with direct modulation, in 21st Optoelectron. and Commun. Conf. (OECC’16), Niigata, Japan (2016), paper ThE1-3

    Google Scholar 

  69. S. Pitris, C. Vagionas, G.T. Kanellos, R. Kisacik, T. Tekin, R. Broeke, N. Pleros, Optical Static RAM cell using a monolithically integrated InP Flip-Flop and wavelength-encoded signals, in Opt. Fiber Commun. Conf. (OFC’16), Anaheim, CA, USA (2016), Tu2K

    Google Scholar 

  70. D. Melati, A. Alippi, A. Annoni, N. Perserico, A. Melloni, Integrated 8-channel mode and wavelength demultiplexer for MDM and WDM transmission over few-mode fibers, in 42nd Europ. Conf. Optical Commun. (ECOC’16), Duesseldorf, Germany (2016), paper SC2.10

    Google Scholar 

  71. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M.J. Strain, A. Melloni, Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20, 8201710 (2014)

    Google Scholar 

  72. D. Melati, M. Carminati, S. Grillanda, G. Ferrari, F. Morichetti, M. Sampietro, A. Melloni, Contactless integrated photonic probe for light monitoring in indium phosphide-based devices. IET Optoelectron. (2015). doi:10.1049/iet-opt.2014.0159

    Article  Google Scholar 

  73. M. Carminati, S. Grillanda, P. Ciccarella, G. Ferrari, M.J. Strain, M. Sampietro, A. Melloni, F. Morichetti, Fiber-to-waveguide alignment assisted by a transparent integrated light monitor. IEEE Photonics Technol. Lett. 27, 510–513 (2015)

    ADS  Google Scholar 

  74. E. Bitincka, G. Gilardi, M. Smit, On-wafer optical loss measurements using ring resonators with integrated sources and detectors. IEEE Photonics J. 6, 1–12 (2014)

    Google Scholar 

  75. E. Bitincka, Generic testing of photonic ICs. Doctoral thesis, Techn. Univ. Eindhoven, The Netherlands (2014)

    Google Scholar 

  76. T. Korthorst, R. Stoffer, A. Bakker, Photonic IC design software and process design kits. Adv. Opt. Techn. 4, 147–155 (2015)

    Google Scholar 

  77. D.F.G. Gallagher, Eigenmode expansion methods for simulation of optical propagation in photonics – pros and cons. Proc. SPIE 4987, 69–82 (2003)

    ADS  Google Scholar 

  78. L. Thylén, The beam propagation method: an analysis of its applicability. Opt. Quantum Electron. 15, 433–439 (1983)

    ADS  Google Scholar 

  79. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    ADS  MATH  Google Scholar 

  80. http://www.aspicdesign.com/

  81. http://www.vpiphotonics.com/

  82. https://www.photond.com/

  83. https://www.lumerical.com/

  84. F.M. Soares, J. Kreissl, M. Theurer, E. Bitincka, T. Goebel, M. Moehrle, N. Grote, Transmitter PIC for THz applications based on generic integration technology, in Proc. 25th Intern. Conf. on Indium Phosphide and Rel. Mat. (IPRM’13), Kobe, Japan (2013), paper TuD4-4

    Google Scholar 

  85. http://www.phoenixbv.com/

  86. http://www.pdaflow.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Grote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grote, N., Baier, M., Soares, F. (2017). Photonic Integrated Circuits on InP. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-42367-8_16

Download citation

Publish with us

Policies and ethics