Skip to main content

Photoelectrical Spectroscopy

  • Chapter
  • First Online:
  • 1314 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 202))

Abstract

This chapter introduces photocurrent (PC) spectroscopy. Although PCs are extensively employed in everyday live, e.g. in solar cells and photodetectors, their use as an analytical tool is less wide spread. We will discuss the topic of homebuilt spectroscopic apparatus and methodology such as steady-state, transient, and modulation approaches. Suitable sample geometries are addressed, since they are crucial for PC analysis. Then, the features that are observed in PC spectra are systematically described and their microscopic nature is addressed. This also includes related photoelectric effects and the results one can expect from PC analysis. Applications such as laser beam induced current are addressed. This includes case studies, as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    DLTS stands for Deep Level Transient Spectroscopy.

  2. 2.

    PITS stands for Photo-Induced Transient Spectroscopy.

  3. 3.

    In case of PL, the use of the terms ‘excitation photon energy’ for the photons that generate the non-equilibrium carriers and ‘photon energy’ for the abscissa of the monitored spectrum are self evident. When dealing with PC, this distinction is not required because the ‘excitation photon energy’ and denotation of the abscissa are identical. Therefore, we use the term ‘photon energy’ only when dealing with PC spectroscopy.

  4. 4.

    The term ‘moderate bias’ refers to an external electric field, which would be sufficient for separating electrons and holes in bulk material. On the other hand, potential shape and energetic structure of the QW should remain (almost) unaffected. Thus, tunneling or the quantum-confined Stark effect are not considered.

  5. 5.

    A trap is an electronic level in within E g with a substantially higher capture rate than emission rate. Traps attract only one carrier type, either electrons or holes, for a certain time, which is typically long compared to the intrinsic non-equilibrium carrier lifetime τ of the material. Since traps are caused by defects within the semiconductor lattice, their number is finite. Thus, their ability for trapping carriers becomes saturated at elevated excitation levels. Traps become either depopulated by re-emission into the band from where they originally come from or into the opposite one. In the first case, they act like a type of carrier storage, while in the latter case their behavior is the one of a a non-radiative recombination center.

  6. 6.

    The spectral shape of the absorption cross section σ in a given spectral range is obtained by plotting the inverse of the photon flux that needed to keep the photocurrent constant in this range. This approach, named constant photoconductivity technique, will be addressed in detail in Sect. 6.3.

References

  1. J.W. Tomm, V. Strelchuk, A. Gerhardt, U. Zeimer, M. Zorn, H. Kissel, M. Weyers, J. Jiménez, J. Appl. Phys. 95, 1122 (2004)

    Article  ADS  Google Scholar 

  2. G. Duggan, G.B. Scott, J. Appl. Phys. 52, 407 (1981)

    Article  ADS  Google Scholar 

  3. H. Schneider, K.v. Klitzing, Phys. Rev. B 38, 6160 (1988)

    Google Scholar 

  4. A.M. Fox, D.A.B. Miller, G. Livescu, J.E. Cunningham, W.Y. Jan, IEEE J. Quant. Electron. 27, 2281 (1991)

    Article  ADS  Google Scholar 

  5. W.K. Metzger, R.K. Ahrenkiel, J. Dashdorj, D.J. Friedman, Phys. Rev. B 71, 035301 (2005)

    Article  ADS  Google Scholar 

  6. J. Nelson, M. Paxman, K.W.J. Barnham, J.S. Roberts, C. Button, IEEE J. Quant. Electron. 29, 1460 (1993)

    Article  ADS  Google Scholar 

  7. H. Schneider, H.C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications, vol. 126, 1st edn. (Springer, Berlin, 2006)

    Google Scholar 

  8. A. Coret, A. Haydar, Phys. Status Solidi (a) Appl. Res. 56, 531 (1979)

    Article  ADS  Google Scholar 

  9. A. Haydar, A. Coret, J. Phys. C6(7), C6 (1980)

    Google Scholar 

  10. J.W. Tomm, B. Ullrich, X.G. Qiu, Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, J. Appl. Phys. 87, 1844 (2000)

    Article  ADS  Google Scholar 

  11. J. Kuhl, E.O. Gobel, T. Pfeiffer, A. Jonietz, Appl. Phys. A Mater. Sci. Process. 34, 105 (1984)

    Article  ADS  Google Scholar 

  12. D.V. Lang, R.A. Logan, M. Jaros, Phys. Rev. B 19, 1015 (1979)

    Article  ADS  Google Scholar 

  13. D.V. Lang, R.A. Logan, Phys. Rev. Lett. 39, 635 (1977)

    Article  ADS  Google Scholar 

  14. H.X. Jiang, G. Brown, J.Y. Lin, J. Appl. Phys. 69, 6701 (1991)

    Article  ADS  Google Scholar 

  15. H.X. Jiang, A. Dissanayake, J.Y. Lin, Phys. Rev. B 45, 4520 (1992)

    Article  ADS  Google Scholar 

  16. H.G. Grimmeiss, L.A. Ledebo, J. Appl. Phys. 46, 2155 (1975)

    Article  ADS  Google Scholar 

  17. G. Lucovsky, Solid State Commun. 3, 299 (1965)

    Article  ADS  Google Scholar 

  18. H.G. Grimmeiss, L.A. Ledebo, J. Phys. C Solid State Phys. 8, 2615 (1975)

    Article  ADS  Google Scholar 

  19. S. Braun, G.H.G., J. Appl. Phys. 45, 2658 (1974)

    Google Scholar 

  20. B. Monemar, H.G. Grimmeiss, Prog. Cryst. Growth Charact. Mater. 5, 47 (1982)

    Article  Google Scholar 

  21. M. Takikawa, K. Kelting, G. Brunthaler, M. Takechi, J. Komeno, J. Appl. Phys. 65, 3937 (1989)

    Article  ADS  Google Scholar 

  22. D. Genzow, Phys. Status Solidi B Basic Res. 55, 547 (1973)

    Article  ADS  Google Scholar 

  23. T.S. Moss, J. Phys. Chem. Solids 22, 117 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Nakata, A. Yokoyama, N. Tsubouchi, K. Fujii, Phys. B Condens. Matter 376, 220 (2006)

    Article  ADS  Google Scholar 

  25. C.M. Penchina, J.S. Moore, N. Holonyak, Phys. Rev. 143, 634 (1966)

    Article  ADS  Google Scholar 

  26. M.J. Chou, D.C. Tsui, G. Weimann, Appl. Phys. Lett. 47, 609 (1985)

    Article  ADS  Google Scholar 

  27. R.H. Bube, Phys. Rev. 99, 1105 (1955)

    Article  ADS  Google Scholar 

  28. E. Beham, A. Zrenner, F. Findeis, M. Bichler, G. Abstreiter, Phys. E-Low-Dimension. Syst. Nanostruct. 13, 139 (2002)

    Article  ADS  Google Scholar 

  29. J.W. Tomm, A. Bärwolff, T. Elsaesser, J. Luft, Appl. Phys. Lett. 77, 747 (2000)

    Article  ADS  Google Scholar 

  30. H. Oheda, J. Appl. Phys. 52, 6693 (1981)

    Article  ADS  Google Scholar 

  31. W.C. Mitchel, G.J. Brown, L.S. Rea, S.R. Smith, J. Appl. Phys. 71, 246 (1992)

    Article  ADS  Google Scholar 

  32. J.W. Tomm, A. Bärwolff, A. Jaeger, T. Elsaesser, J. Bollmann, W.T. Masselink, A. Gerhardt, J. Donecker, J. Appl. Phys. 84, 1325 (1998)

    Article  ADS  Google Scholar 

  33. P. Blood, J. Appl. Phys. 58, 2288 (1985)

    Article  ADS  Google Scholar 

  34. C.H. Henry, P.M. Petroff, R.A. Logan, F.R. Merritt, J. Appl. Phys. 50, 3721 (1979)

    Article  ADS  Google Scholar 

  35. J.S. Weiner, D.S. Chemla, D.A.B. Miller, H.A. Haus, A.C. Gossard, W. Wiegmann, C.A. Burrus, Appl. Phys. Lett. 47, 664 (1985)

    Article  ADS  Google Scholar 

  36. P.M. Smowton, P. Blood, P.C. Mogensen, D.P. Bour, Int. J. Optoelectron. 10, 383 (1996)

    Google Scholar 

  37. J.W. Tomm, R. Müller, A. Bärwolff, T. Elsaesser, D. Lorenzen, F.X. Daiminger, A. Gerhardt, J. Donecker, Appl. Phys. Lett. 73, 3908 (1998)

    Article  ADS  Google Scholar 

  38. E. Harnik, A. Many, N.B. Grover, Rev. Sci. Instrum. 29, 889 (1958)

    Article  ADS  Google Scholar 

  39. N. Honma, C. Munakata, H. Itoh, T. Warabisako, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 25, 743 (1986)

    Google Scholar 

  40. C. Munakata, N. Honma, H. Itoh, Jpn. J. Appl. Phys. Part 2 Lett. 22, L103 (1983)

    Google Scholar 

  41. C. Longeaud, J.P. Kleider, Phys. Rev. B 45, 11672 (1992)

    Article  ADS  Google Scholar 

  42. C. Longeaud, J.A. Schmidt, J.P. Kleider, Phys. Rev. B 73, 235316 (2006)

    Article  ADS  Google Scholar 

  43. C. Longeaud, J.A. Schmidt, R.R. Koropecki, Phys. Rev. B 73, 235317 (2006)

    Article  ADS  Google Scholar 

  44. J.A. Schmidt, C. Longeaud, R.R. Koropecki, R. Arce, J.P. Kleider, J. Non-Cryst. Solids 354, 2914 (2008)

    Article  ADS  Google Scholar 

  45. C. Longeaud, J.P. Kleider, P. Kaminski, R. Kozlowski, M. Pawlowski, J. Cwirko, Semicond. Sci. Technol. 14, 747 (1999)

    Article  ADS  Google Scholar 

  46. J.A. Schmidt, C. Longeaud, J.P. Kleider, Thin Solid Films 493, 319 (2005)

    Article  ADS  Google Scholar 

  47. C. Longeaud, J.P. Kleider, P. Kaminski, R. Kozlowski, M. Miczuga, J. Phys.-Condens. Matter 21 (2009)

    Google Scholar 

  48. D.T. Stevenson, R.J. Keyes, J. Appl. Phys. 26, 190 (1955)

    Article  ADS  Google Scholar 

  49. C. Hurtes, M. Boulou, A. Mitonneau, D. Bois, Appl. Phys. Lett. 32, 821 (1978)

    Article  ADS  Google Scholar 

  50. Z.Q. Fang, L. Shan, T.E. Schlesinger, A.G. Milnes, Solid-State Electron. 32, 405 (1989)

    Article  ADS  Google Scholar 

  51. R.L. Tober, W.Q. Li, P.K. Bhattacharya, J. Appl. Phys. 71, 3506 (1992)

    Article  ADS  Google Scholar 

  52. S.A. Tabatabaei, A.A. Iliadis, C.E.C. Wood, J. Electron. Mater. 24, 87 (1995)

    Article  ADS  Google Scholar 

  53. J.W. Tomm, A. Gerhardt, R. Muller, M.L. Biermann, J.P. Holland, D. Lorenzen, E. Kaulfersch, Appl. Phys. Lett. 82, 4193 (2003)

    Article  ADS  Google Scholar 

  54. L. Hoglund, C. Asplund, Q. Wang, S. Almqvist, H. Malm, E. Petrini, J.Y. Andersson, P.O. Holtz, H. Pettersson, Appl. Phys. Lett. 88, 213510 (2006)

    Google Scholar 

  55. F. Findeis, M. Baier, E. Beham, A. Zrenner, G. Abstreiter, Appl. Phys. Lett. 78, 2958 (2001)

    Article  ADS  Google Scholar 

  56. K. Aoki, M. Sakamoto, T. Tanigawa, Phys. E-Low-Dimension. Syst. Nanostructures 40, 1642 (2008)

    Article  ADS  Google Scholar 

  57. C. Ropers, T.Q. Tien, C. Lienau, J.W. Tomm, P. Brick, N. Linder, B. Mayer, M. Muller, S. Tautz, W. Schmid, Appl. Phys. Lett. 88, 133513 (2006)

    Article  ADS  Google Scholar 

  58. G.E. Stillman, C.M. Wolfe, J.O. Dimmock, Solid State Commun. 7, 921 (1969)

    Article  ADS  Google Scholar 

  59. J. Oroshnik, A. Many, J. Electrochem. Soc. 106, 360 (1959)

    Article  Google Scholar 

  60. D.V. Lang, C.H. Henry, Solid-State Electron. 21, 1519 (1978)

    Article  ADS  Google Scholar 

  61. B. Rezek, C.E. Nebel, M. Stutzmann, J. Non-Cryst. Solids 266, 315 (2000)

    Article  ADS  Google Scholar 

  62. S. Kudera, Y. Zhang, E. Di Fabrizio, L. Manna, R. Krahne, Phys. Rev. B 86, 075307 1 (2012)

    Google Scholar 

  63. H.-C. Ostendorf, A.L. Endrös, Appl. Phys. Lett. 71, 3275 (1997)

    Article  ADS  Google Scholar 

  64. T. Guenther, V. Malyarchuk, J.W. Tomm, R. Muller, C. Lienau, J. Luft, Appl. Phys. Lett. 78, 1463 (2001)

    Article  ADS  Google Scholar 

  65. S. Friede, S. Kuehn, J.W. Tomm, V. Hoffmann, U. Zeimer, M. Weyers, M. Kneissl, T. Elsaesser, Semicond. Sci. Technol. 29, 112001 (2014)

    Article  ADS  Google Scholar 

  66. A. Richter, J.W. Tomm, C. Lienau, J. Luft, Appl. Phys. Lett. 69, 3981 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jimenez .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jimenez, J., Tomm, J.W. (2016). Photoelectrical Spectroscopy. In: Spectroscopic Analysis of Optoelectronic Semiconductors. Springer Series in Optical Sciences, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-319-42349-4_6

Download citation

Publish with us

Policies and ethics