Skip to main content

Improving Node Similarity for Discovering Community Structure in Complex Networks

  • Conference paper
  • First Online:
Computational Social Networks (CSoNet 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9795))

Included in the following conference series:

Abstract

Community detection is to detect groups consisting of densely connected nodes, and having sparse connections between them. Many researchers indicate that detecting community structures in complex networks can extract plenty of useful information, such as the structural features, network properties, and dynamic characteristics of the community. Several community detection methods introduced different similarity measures between nodes, and their performance can be improved. In this paper, we propose a community detection method based on an improvement of node similarities. Our method initializes a level for each node and assigns nodes into a community based on similarity between nodes. Then it selects core communities and expands those communities by layers. Finally, we merge communities and choose the best community in the network. The experimental results show that our method achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www-personal.umich.edu/~mejn/netdata/.

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Zaïane, O.R., Goebel, R.: Detecting communities in social networks using max-min modularity. In: SDM, vol. 3, pp. 20–24. SIAM (2009)

    Google Scholar 

  5. Cilibrasi, R.L., Vitanyi, P.: The google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)

    Article  Google Scholar 

  6. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  7. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech: Theory Exp. 2005(09), P09008 (2005)

    Article  Google Scholar 

  8. Dinh, T.N., Thai, M.T.: Community detection in scale-free networks: approximation algorithms for maximizing modularity. IEEE J. Sel. Areas Commun. 31(6), 997–1006 (2013)

    Article  Google Scholar 

  9. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Nat. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  12. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(04), 565–573 (2003)

    Article  Google Scholar 

  14. Good, B.H., de Montjoye, Y.A., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81(4), 046106 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hric, D., Darst, R.K., Fortunato, S.: Community detection in networks: structural communities versus ground truth. Phys. Rev. E 90(6), 062805 (2014)

    Article  Google Scholar 

  16. Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr, Corbaz (1901)

    Google Scholar 

  17. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  MATH  Google Scholar 

  18. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

    Article  Google Scholar 

  19. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  20. Lancichinetti, A., Kivelä, M., Saramäki, J., Fortunato, S.: Characterizing the community structure of complex networks. PloS ONE 5(8), e11976 (2010)

    Article  Google Scholar 

  21. Li, X., Ng, M.K., Ye, Y.: Multicomm: finding community structure in multi-dimensional networks. IEEE Trans. Knowl. Data Eng. 26(4), 929–941 (2014)

    Article  Google Scholar 

  22. Lusseau, D.: The emergent properties of a dolphin social network. Proc. Roy. Soc. London B: Biol. Sci. 270(Suppl 2), S186–S188 (2003)

    Article  Google Scholar 

  23. Newman, M.E.: Detecting community structure in networks. Eur. Phys. J. B 38(2), 321–330 (2004)

    Article  Google Scholar 

  24. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  25. Newman, M.E.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  26. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  27. Pan, Y., Li, D.H., Liu, J.G., Liang, J.Z.: Detecting community structure in complex networks via node similarity. Physica A 389(14), 2849–2857 (2010)

    Article  Google Scholar 

  28. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Nat. Acad. Sci. U.S.A. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  30. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  Google Scholar 

  31. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  32. Sorenson, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kongelige Danske Videnskabernes Selskab 5(1–34), 4–7 (1948)

    Google Scholar 

  33. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: 2013 IEEE 13th International Conference on Data mining (ICDM), pp. 1151–1156. IEEE (2013)

    Google Scholar 

  34. Yin, C., Zhu, S., Chen, H., Zhang, B., David, B.: A method for community detection of complex networks based on hierarchical clustering. Int. J. Distrib. Sens. Netw. 2015, 137 (2015)

    Google Scholar 

  35. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  36. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hien T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pham, P.N.H., Nguyen, H.T., Snasel, V. (2016). Improving Node Similarity for Discovering Community Structure in Complex Networks. In: Nguyen, H., Snasel, V. (eds) Computational Social Networks. CSoNet 2016. Lecture Notes in Computer Science(), vol 9795. Springer, Cham. https://doi.org/10.1007/978-3-319-42345-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42345-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42344-9

  • Online ISBN: 978-3-319-42345-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics