Skip to main content

New Radiopharmaceutical Markers for Metabolism and Receptor

  • 1297 Accesses

Abstract

Recently new radiopharmaceuticals have been proposed for investigating prostate cancer patients, including metabolic radiotracer such as anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid (18F-FACBC) or probe targeting the prostate-specific membrane antigen (PSMA). These radiotracers showed in literature better performance in the detection of prostate cancer recurrence as compared to choline PET/CT imaging [1, 2].

Keywords

  • Prostate Cancer
  • Bone Metastasis
  • Prostate Cancer Patient
  • Recurrent Prostate Cancer
  • DU145 Prostate Cancer Cell Line

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42327-2_9
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5

References

  1. Nanni C, Schiavina R, Boschi S et al (2013) Comparison of 18F-FACBC and 11C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl Med Mol Imaging 40(Suppl 1):S11–S17. doi:10.1007/s00259-013-2373-3

    CrossRef  PubMed  Google Scholar 

  2. Morigi JJ, Stricker PD, van Leeuwen PJ et al (2015) Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med 56(8):1185–1190. doi:10.2967/jnumed.115.160382

    CAS  CrossRef  PubMed  Google Scholar 

  3. Oka S, Hattori R, Kurosaki F et al (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48:46–55

    CAS  PubMed  Google Scholar 

  4. Sörensen J, Owenius R, Lax M, Johansson S (2013) Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur J Nucl Med Mol Imaging 40:394–402

    CrossRef  PubMed  Google Scholar 

  5. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176. doi:10.1053/ctrv.2000.0210

    CAS  CrossRef  PubMed  Google Scholar 

  6. Bogdanos J, Karamanolakis D, Tenta R et al (2003) Endocrine/paracrine/autocrine survival factor activity of bone microenvironment participates in the development of androgen ablation and chemotherapy refractoriness of prostate cancer metastasis in skeleton. Endocr Relat Cancer 10(2):279–289, http://www.ncbi.nlm.nih.gov/pubmed/12790789. Accessed 9 Mar 2016

    CAS  CrossRef  PubMed  Google Scholar 

  7. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594, http://www.ncbi.nlm.nih.gov/pubmed/9362426. Accessed 25 Jan 2016

    CAS  CrossRef  PubMed  Google Scholar 

  8. Ceci F, Castellucci P, Graziani T et al (2015) 11C-choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clin Nucl Med 40(5):e265–e270. doi:10.1097/RLU.0000000000000783

    CrossRef  PubMed  Google Scholar 

  9. Okudaira H, Shikano N, Nishii R et al (2011) Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 52(5):822–829. doi:10.2967/jnumed.110.086074

    CAS  CrossRef  PubMed  Google Scholar 

  10. Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR (2007) Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med 48(6):1017–1020. doi:10.2967/jnumed.107.040097

    CAS  CrossRef  PubMed  Google Scholar 

  11. Asano Y, Inoue Y, Ikeda Y et al (2011) Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med 25(6):414–418. doi:10.1007/s12149-011-0477-z

    CAS  CrossRef  PubMed  Google Scholar 

  12. McParland BJ, Wall A, Johansson S, Sørensen J (2013) The clinical safety, biodistribution and internal radiation dosimetry of [18F]fluciclovine in healthy adult volunteers. Eur J Nucl Med Mol Imaging 40(8):1256–1264. doi:10.1007/s00259-013-2403-1

    CAS  CrossRef  PubMed  Google Scholar 

  13. Schuster DM, Nanni C, Fanti S et al (2014) Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 55(12):1986–1992. doi:10.2967/jnumed.114.143628

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Odewole OA, Oyenuga OA, Tade F et al (2015) Reproducibility and reliability of anti-3-[18F]FACBC uptake measurements in background structures and malignant lesions on follow-up PET-CT in prostate carcinoma: an exploratory analysis. Mol Imaging Biol 17(2):277–283. doi:10.1007/s11307-014-0797-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Schuster DM, Nieh PT, Jani AB et al (2014) Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol 191(5):1446–1453. doi:10.1016/j.juro.2013.10.065

    CrossRef  PubMed  Google Scholar 

  16. Brunocilla E, Schiavina R, Nanni C et al (2014) First case of 18F-FACBC PET/CT-guided salvage radiotherapy for local relapse after radical prostatectomy with negative 11C-Choline PET/CT and multiparametric MRI: new imaging techniques may improve patient selection. Arch Ital di Urol Androl organo Uff [di] Soc Ital di Ecogr Urol e Nefrol/Assoc Ric Urol 86(3):239–240. doi:10.4081/aiua.2014.3.239

    Google Scholar 

  17. Nanni C, Zanoni L, Pultrone C et al (2016) (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 43(9):1601–1610. doi: 10.1007/s00259-016-3329-1. Epub 2016 Mar 10. PubMed PMID: 26960562.

  18. Kairemo K, Rasulova N, Partanen K, Joensuu T (2014) Preliminary clinical experience of trans-1-Amino-3-(18)F-fluorocyclobutanecarboxylic Acid (anti-(18)F-FACBC) PET/CT imaging in prostate cancer patients. Biomed Res Int 2014:305182. doi:10.1155/2014/305182

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Suzuki H, Inoue Y, Fujimoto H et al (2016) Diagnostic performance and safety of NMK36 (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid)-PET/CT in primary prostate cancer: multicenter Phase IIb clinical trial. Jpn J Clin Oncol 46(2):152–162. doi:10.1093/jjco/hyv181

    CrossRef  PubMed  Google Scholar 

  20. Sweat SD, Pacelli A, Murphy GP, Bostwick DG (1998) Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52(4):637–640, http://www.ncbi.nlm.nih.gov/pubmed/9763084. Accessed 9 Mar 2016

    CAS  CrossRef  PubMed  Google Scholar 

  21. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85, http://www.ncbi.nlm.nih.gov/pubmed/9815541. Accessed 9 Mar 2016

    CAS  PubMed  Google Scholar 

  22. Afshar-Oromieh A, Zechmann CM, Malcher A et al (2013) Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41(1):11–20. doi:10.1007/s00259-013-2525-5

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Ceci F, Uprimny C, Nilica B et al (2015) (68)Ga-PSMA PET/CT for restaging recurrent prostate cancer: which factors are associated with PET/CT detection rate? Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-015-3078-6

  24. Sterzing F, Kratochwil C, Fiedler H et al (2016) (68)Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients. Eur J Nucl Med Mol Imaging 43(1):34–41. doi:10.1007/s00259-015-3188-1

    CAS  CrossRef  PubMed  Google Scholar 

  25. Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42(2):197–209. doi:10.1007/s00259-014-2949-6

    CAS  CrossRef  PubMed  Google Scholar 

  26. Eiber M, Maurer T, Souvatzoglou M et al (2015) Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. doi:10.2967/jnumed.115.154153

    Google Scholar 

  27. Verburg FA, Pfister D, Heidenreich A et al (2016) Extent of disease in recurrent prostate cancer determined by [(68)Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur J Nucl Med Mol Imaging 43(3):397–403. doi: 10.1007/s00259-015-3240-1. Epub 2015 Nov 12. PubMed PMID: 26563121.10.1007/s00259-015-3240-1

  28. Evangelista L, Briganti A, Fanti S et al (2016) New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. doi:10.1016/j.eururo.2016.01.029

  29. Cho SY, Gage KL, Mease RC et al (2012) Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 53(12):1883–1891. doi:10.2967/jnumed.112.104661

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Pullambhatla M, Foss CA et al (2011) 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 17(24):7645–7653. doi:10.1158/1078-0432.CCR-11-1357

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Rowe SP, Mana-Ay M, Javadi MS et al (2016) PSMA-based detection of prostate cancer bone lesions with (18)F-DCFPyL PET/CT: a sensitive alternative to (99m)Tc-MDP bone scan and Na(18)F PET/CT? Clin Genitourin Cancer 14(1):e115–e118. doi:10.1016/j.clgc.2015.09.011

    CrossRef  PubMed  Google Scholar 

  32. Rowe SP, Macura KJ, Ciarallo A et al (2016) Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J Nucl Med 57(1):46–53. doi:10.2967/jnumed.115.163782

    CrossRef  PubMed  Google Scholar 

  33. Wieser G, Mansi R, Grosu AL et al (2014) Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist – from mice to men. Theranostics 4(4):412–419. doi:10.7150/thno.7324

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Sah B-R, Burger IA, Schibli R et al (2015) Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue BAY 864367 in patients with prostate cancer. J Nucl Med 56(3):372–378. doi:10.2967/jnumed.114.147116

    CAS  CrossRef  PubMed  Google Scholar 

  35. Liolios CC, Schaefer M, Haberkorn U, Eder M, Kopka K (2016) Novel bispecific PSMA/GRPr targeting radioligands with optimized pharmacokinetics for improved PET imaging of prostate cancer. Bioconjug Chem. doi:10.1021/acs.bioconjchem.5b00687

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Llanos Geraldo and Prof. Irene Virgolini (Department of Nuclear Medicine, Medizinische Universität Innsbruck, Austria) for providing the 68Ga-PSMA PET/CT cases reported in Figs. 9.4 and 9.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Fanti MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ceci, F., Morigi, J.J., Zanoni, L., Fanti, S. (2017). New Radiopharmaceutical Markers for Metabolism and Receptor. In: Bertoldo, F., Boccardo, F., Bombardieri, E., Evangelista, L., Valdagni, R. (eds) Bone Metastases from Prostate Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-42327-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42327-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42326-5

  • Online ISBN: 978-3-319-42327-2

  • eBook Packages: MedicineMedicine (R0)