Skip to main content

Imaging of Glycolysis with 18F-FDG PET

  • 1300 Accesses

Abstract

18F-Fluorodeoxyglucose (FDG) is an analogue of glucose and is the most common PET radiotracer for oncological applications. Its wide use in clinical practice is primarily due to the Warburg effect, which leads to higher glucose consumption in the malignant cells in comparison to normal tissue. The malignancy-induced hypermetabolism is generally based upon overexpression of cellular membrane glucose transporters (mainly glucose transporter 1, GLUT-1) and enhanced hexokinase enzymatic activity in tumors [1, 2].

Keywords

  • PET/CT
  • Prostate
  • Cancer
  • FDG
  • Bone
  • Castrate resistant
  • Response

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42327-2_8
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5

References

  1. Macheda ML, Rogers S, Bets JD (2005) Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    CAS  CrossRef  PubMed  Google Scholar 

  2. Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57:170–178

    CAS  PubMed  Google Scholar 

  3. Effert P, Beniers AJ, Tamimi Y et al (2004) Expression of glucose transporter 1 (GLUT-1) in cell lines and clinical specimen from human prostate adenocarcinoma. Anticancer Res 24:3057–3063

    CAS  PubMed  Google Scholar 

  4. Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36:1625–1632

    CAS  PubMed  Google Scholar 

  5. Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ, Kim JW et al (2011) Androgen stimulates glycolysis for de novo lipid synthesis by increasing activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 in prostate cancer cells. Biochem J 433:225–233

    CAS  CrossRef  PubMed  Google Scholar 

  6. Kukuk D, Reischl G, Raguin O, Wiehr S, Judenhofer MS, Calaminus C et al (2011) Assessment of PET tracer uptake in hormone-independent and hormone-dependent xenograft prostate cancer mouse models. J Nucl Med 52:1654–1663

    CAS  CrossRef  PubMed  Google Scholar 

  7. Jadvar H (2013) Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging 40:S5–S10

    CrossRef  CAS  PubMed  Google Scholar 

  8. Gelmann EP (2002) Molecular biology of the androgen receptor. J Clin Oncol 20(13):3001–3015

    CAS  CrossRef  PubMed  Google Scholar 

  9. Balk SP, Ko YJ, Burbley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21(2):383–391

    CAS  CrossRef  PubMed  Google Scholar 

  10. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354

    CAS  CrossRef  PubMed  Google Scholar 

  11. Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxyglucose-2-[F-18]fluoro-D-glucose. Radiology 199:751–756

    CAS  CrossRef  PubMed  Google Scholar 

  12. Yeh SD, Imbriaco M, Larson SM et al (1996) Detection of bony metastases of androgen-independent prostate cancer by PET FDG. Nucl Med Biol 23:693–697

    CAS  CrossRef  PubMed  Google Scholar 

  13. Tiwari BP, Jangra S, Nair N et al (2010) Complimentary role of FDG PET imaging and skeletal scintigraphy in the evaluation of patients with prostate carcinoma. Indian J Cancer 47:385–390

    CAS  CrossRef  PubMed  Google Scholar 

  14. Damle NA, Bal C, Bandopadhyaya GP et al (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung, and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31:262–269

    CrossRef  PubMed  Google Scholar 

  15. Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dishydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92

    CrossRef  PubMed  Google Scholar 

  16. Bailly M, Besse H, Kerdraon R et al (2014) 18F-FDG PET/CT superscan in prostate cancer. Clin Nucl Med 39:912–914

    CrossRef  PubMed  Google Scholar 

  17. Iagaru A, Mittra E, Yaghoubi SS et al (2009) Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 50:501–505

    CrossRef  PubMed  Google Scholar 

  18. Lin FI, Rao JE, Mittra ES et al (2012) Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging 39:262–270

    CAS  CrossRef  PubMed  Google Scholar 

  19. Minamimoto R, Loening A, Jamali M et al (2015) Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med 56:1862–1868

    CrossRef  CAS  PubMed  Google Scholar 

  20. Schoder H, Hermann K, Gonen M et al (2005) 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res 11:4761–4769

    CrossRef  PubMed  Google Scholar 

  21. Jadvar H, Desai B, Ji L et al (2012) Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med 37:637–643

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Vassiliou V, Andreopoulos D, Frangos S et al (2011) Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities. Clin Oncol (R Coll Radiol) 23:632–645

    CAS  CrossRef  Google Scholar 

  23. Zhang Y, Saylor M, Wen S et al (2006) Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol 8:300–308

    CAS  CrossRef  PubMed  Google Scholar 

  24. Zukotynski KA, Kim CK, Gerbaudo VH et al (2014) (18F)F-FDG-PET/CT and (18F)F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging 5:72–82

    PubMed  PubMed Central  Google Scholar 

  25. Simoncic U, Perlman S, Liu G et al (2015) Comparison of NaF and FDG PET/CT for assessment of treatment response in castrate-resistant prostate cancers with osseous metastases. Clin Genitourin Cancer 13:e7–e17

    CrossRef  PubMed  Google Scholar 

  26. Courtney KD, Manola JB, Elfiky AA et al (2015) A phase I study of everolimus and docetaxel in patients with castration-resistant prostate cancer. Clin Genitourin Cancer 13:113–123

    CrossRef  PubMed  Google Scholar 

  27. Yu EY, Muzi M, Hackenbracht JA et al (2011) C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med 36:192–198

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Morris MJ, Akhurst T, Osman I et al (2002) Fluoridated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59:913–918

    CrossRef  PubMed  Google Scholar 

  29. Morris MJ, Akhurst T, Larson SM et al (2005) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 11:3210–3216

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Meirelles GS, Schoder H, Ravizzini GC et al (2010) Prognostic value of baseline [18F]fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16:6093–6096

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Vargas HA, Wassberg C, Fox JJ et al (2014) Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 271:220–229

    CrossRef  PubMed  Google Scholar 

  32. Jadvar H, Desai B, Ji L et al (2013) Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J Nucl Med 54:1195–1201

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Jadvar H, Groshen SG, Quinn DI (2015) Association of overall survival with glycolytic activity of castrate-resistant prostate cancer metastases. Radiology 274:624–625

    CrossRef  PubMed  Google Scholar 

  34. Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F-or 11C-Acetate, and 18F- or 11C-choline. J Nucl Med 52(1):81–89

    CrossRef  PubMed  Google Scholar 

Download references

Acknowledgment

Supported in part by the United States of America National Institutes of Health grants R01-CA111613, R21-CA142426, R21-EB017568, and P30-CA014089

Financial Disclosure

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Jadvar MD, PhD, MPH, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jadvar, H., Evangelista, L. (2017). Imaging of Glycolysis with 18F-FDG PET. In: Bertoldo, F., Boccardo, F., Bombardieri, E., Evangelista, L., Valdagni, R. (eds) Bone Metastases from Prostate Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-42327-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42327-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42326-5

  • Online ISBN: 978-3-319-42327-2

  • eBook Packages: MedicineMedicine (R0)