Skip to main content

Detection of Bone Metastases and Evaluation of Therapy Response in Prostate Cancer Patients by Radiolabelled Choline PET/CT

Abstract

Bone is the most common site for metastases in human prostate cancer patients. Skeletal metastases are a significant cause of morbidity and mortality and overall greatly affect the quality of life of patients. A significant portion of patients may be treated with curative intent when micrometastatic disease is present and not detected on current imaging studies, including bone scan and computed tomography scan. Molecular imaging approaches and, in particular Choline positron emission tomography, have been investigated to improve the detection of metastatic disease in patients with prostate cancer.

Keywords

  • Prostate Cancer
  • Bone Metastasis
  • Androgen Deprivation Therapy
  • Prostate Cancer Patient
  • Phosphoryl Choline

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42327-2_7
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8

Abbreviations

11C-CHO:

11C-choline

18F-CHO:

18F-choline

ADT:

Androgen deprivation therapy

BS:

Bone scintigraphy

CRPC:

Castration-resistant prostate cancer

CT:

Computed tomography

18F-FDG:

Fluorodeoxyglucose

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

PSA:

Prostate-specific antigen

RECIST:

Response Evaluation Criteria in Solid Tumours

RT:

Radiation therapy

SBRT:

Stereotactic body RT

SUV:

Standardised uptake value

References

  1. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12(7):413–439

    CAS  CrossRef  PubMed  Google Scholar 

  2. Janardhan S, Srivani P, Sastry GN (2006) Choline kinase: an important target for cancer. Curr Med Chem 13(10):1169–1186

    CAS  CrossRef  PubMed  Google Scholar 

  3. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med Off Publ Soc Nucl Med 39(6):990–995

    CAS  Google Scholar 

  4. Torizuka T et al (2003) Imaging of gynecologic tumors: comparison of (11)C-choline PET with (18)F-FDG PET. J Nucl Med Off Publ Soc Nucl Med 44(7):1051–1056

    CAS  Google Scholar 

  5. Wondergem M et al (2013) A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun 34(10):935–945

    CAS  CrossRef  PubMed  Google Scholar 

  6. Picchio M et al (2012) [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging 39(1):13–26

    CAS  CrossRef  PubMed  Google Scholar 

  7. Messiou C, Cook G, deSouza NM (2009) Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 101:1225–1232

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Evangelista L et al (2013) Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 63(6):1040–1048

    CrossRef  PubMed  Google Scholar 

  9. De Bari B et al (2014) Choline-PET in prostate cancer management: the point of view of the radiation oncologist. Crit Rev Oncol Hematol 91(3):234–247

    CrossRef  PubMed  Google Scholar 

  10. Tuncel M et al (2008) [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35(6):689–695

    CAS  CrossRef  PubMed  Google Scholar 

  11. Langsteger W et al (2012) Imaging of bone metastases in prostate cancer: an update. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med 56(5):447–458

    CAS  Google Scholar 

  12. von Eyben FE, Kairemo K (2014) Meta-analysis of (11)C-choline and (18)F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun 35(3):221–230

    CrossRef  Google Scholar 

  13. Fuccio C et al (2012) Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol 81(8):e893–e896

    CrossRef  PubMed  Google Scholar 

  14. Beheshti M et al (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35(10):1766–1774

    CrossRef  PubMed  Google Scholar 

  15. Beer AJ et al (2011) Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol 12(2):181–191

    CrossRef  PubMed  Google Scholar 

  16. Beheshti M et al (2010) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 12(1):98–107

    CrossRef  Google Scholar 

  17. Ayala-Peacock DN et al (2013) A pilot 11C-choline PET/CT imaging study investigating the ability to detect occult metastatic osseous disease in newly diagnosed high-risk prostate adenocarcinoma. Pract Radiat Oncol 3(2 Suppl 1):S27

    CAS  CrossRef  PubMed  Google Scholar 

  18. Kjolhede H et al (2012) Combined 18F-fluorocholine and 18F-fluoride positron emission tomography/computed tomography imaging for staging of high-risk prostate cancer. BJU Int 110(10):1501–1506

    CrossRef  PubMed  Google Scholar 

  19. Poulsen MH et al (2012) [18F]fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int 110(11):1666–1671

    CAS  CrossRef  PubMed  Google Scholar 

  20. Fuccio C et al (2010) Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 24(6):485–492

    CAS  CrossRef  PubMed  Google Scholar 

  21. Poulsen MH et al (2014) Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography(PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int 114(6):818–823

    CAS  CrossRef  PubMed  Google Scholar 

  22. Even-Sapir E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med Off Publ Soc Nucl Med 47(2):287–297

    Google Scholar 

  23. Brogsitter C, Zophel K, Kotzerke J (2013) 18F-Choline, (11)C-choline and (11)C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging 40(Suppl 1):18–27

    CAS  CrossRef  Google Scholar 

  24. Fanti S et al (2011) Re: Nicolas Mottet, Joaquim Bellmunt, Michel Bolla, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2011;59:572–83. Eur Urol 60(5):e37–e38; author reply e39–41

    CrossRef  PubMed  Google Scholar 

  25. Ceci F et al (2015) 11C-choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clin Nucl Med 40(5):e265–e270

    CrossRef  PubMed  Google Scholar 

  26. Zhu A, Lee D, Shim H (2011) Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol 38(1):55–69

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Pinkawa M, Eble MJ, Mottaghy FM (2011) PET and PET/CT in radiation treatment planning for prostate cancer. Expert Rev Anticancer Ther 11(7):1033–1039

    CrossRef  PubMed  Google Scholar 

  28. Das SK, Ten Haken RK (2011) Functional and molecular image guidance in radiotherapy treatment planning optimization. Semin Radiat Oncol 21(2):111–118

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Shi X et al (2014) PET/CT imaging-guided dose painting in radiation therapy. Cancer Lett 355(2):169–175

    CAS  CrossRef  PubMed  Google Scholar 

  30. Kunkler IH et al (2014) Review of current best practice and priorities for research in radiation oncology for elderly patients with cancer: the International Society of Geriatric Oncology (SIOG) task force. Ann Oncol Off J Eur Soc Med Oncol/ESMO 25(11):2134–2146

    CAS  CrossRef  Google Scholar 

  31. Husarik DB et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263

    CrossRef  PubMed  Google Scholar 

  32. Soyka JD et al (2012) Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging 39(6):936–943

    CAS  CrossRef  PubMed  Google Scholar 

  33. Schick U et al (2013) Androgen deprivation and high-dose radiotherapy for oligometastatic prostate cancer patients with less than five regional and/or distant metastases. Acta Oncol 52(8):1622–1628

    CAS  CrossRef  PubMed  Google Scholar 

  34. Decaestecker K et al (2014) Surveillance or metastasis-directed Therapy for OligoMetastatic Prostate cancer recurrence (STOMP): study protocol for a randomized phase II trial. BMC Cancer 14:671

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Ost P et al (2015) Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur Urol 67(5):852–863

    CrossRef  PubMed  Google Scholar 

  36. Gandaglia G et al (2014) Impact of the site of metastases on survival in patients with metastatic prostate cancer. Eur Urol 68(2):325–334

    CrossRef  PubMed  Google Scholar 

  37. Rigaud J et al (2002) Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol 168(4 Pt 1):1423–1426

    CrossRef  PubMed  Google Scholar 

  38. Sabbatini P et al (1999) Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 17(3):948–957

    CAS  Google Scholar 

  39. Weinfurt KP et al (2004) The impact of skeletal-related events on preferences and health-related quality of life of patients with metastatic prostate cancer. J Urol 171(4):42

    Google Scholar 

  40. Serpa Neto A et al (2010) A systematic review and meta-analysis of bone metabolism in prostate adenocarcinoma. BMC Urol 10:9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Muacevic A et al (2013) Safety and feasibility of image-guided robotic radiosurgery for patients with limited bone metastases of prostate cancer. Urol Oncol 31(4):455–460

    CrossRef  PubMed  Google Scholar 

  42. Giovacchini G et al (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6):1065–1073

    CAS  CrossRef  PubMed  Google Scholar 

  43. Fuccio C et al (2011) Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study. Eur J Nucl Med Mol Imaging 38(11):1985–1989

    CAS  CrossRef  PubMed  Google Scholar 

  44. Berkovic P et al (2013) Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin Genitourin Cancer 11(1):27–32

    CrossRef  PubMed  Google Scholar 

  45. Ahmed KA et al (2012) Stereotactic body radiation therapy in the treatment of oligometastatic prostate cancer. Front oOncol 2:215

    Google Scholar 

  46. Milano MT et al (2012) Oligometastases treated with stereotactic body radiotherapy: long-term follow-up of prospective study. Int J Radiat Oncol Biol Phys 83(3):878–886

    CrossRef  PubMed  Google Scholar 

  47. Costelloe CM et al (2010) Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer 1:80–92

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    CAS  CrossRef  PubMed  Google Scholar 

  49. Hamaoka T et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 22(14):2942–2953

    CrossRef  Google Scholar 

  50. Kwee SA et al (2009) (18)F-Choline PET/CT imaging of RECIST measurable lesions in hormone refractory prostate cancer. Ann Nucl Med 23(6):541–548

    CAS  CrossRef  PubMed  Google Scholar 

  51. Balogova S et al (2014) Whole-body 18F-fluorocholine (FCH) PET/CT and MRI of the spine for monitoring patients with castration-resistant prostate cancer metastatic to bone: a pilot study. Clin Nucl Med 39(11):951–959

    CrossRef  PubMed  Google Scholar 

  52. Lecouvet FE et al (2014) Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer 50(15):2519–2531

    CAS  CrossRef  PubMed  Google Scholar 

  53. De Giorgi U et al (2014) Early outcome prediction on 18F-fluorocholine PET/CT in metastatic castration-resistant prostate cancer patients treated with abiraterone. Oncotarg et 5(23):12448–12458

    CrossRef  Google Scholar 

  54. De Giorgi U et al (2010) 18F-FDG PET/CT findings and circulating tumor cell counts in the monitoring of systemic therapies for bone metastases from breast cancer. J Nucl Med Off Publ Soc Nucl Med 51(8):1213–1218

    Google Scholar 

  55. Ell PJ (2006) The contribution of PET/CT to improved patient management. Br J Radiol 79(937):32–36

    CAS  CrossRef  PubMed  Google Scholar 

  56. Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354(5):496–507

    CAS  CrossRef  PubMed  Google Scholar 

  57. Wahl RL et al (2009) From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med Off Publ Soc Nucl Med 50(Suppl 1):122S–150S

    CAS  Google Scholar 

  58. Morisson C, Jeraj R, Liu G (2013) Imaging of castration-resistant prostrate cancer: development of imaging response biomarkers. Curr Opin Urol 23(3):230–236

    CrossRef  PubMed  Google Scholar 

  59. Kwee SA et al (2014) Prognosis related to metastatic burden measured by (1)(8)F-fluorocholine PET/CT in castration-resistant prostate cancer. J Nucl Med Off Publ Soc Nucl Med 55(6):905–910

    CAS  Google Scholar 

  60. Oprea-Lager DE et al (2015) Repeatability of quantitative 18F-fluoromethylcholine PET/CT studies in prostate cancer. J Nucl Med Off Publ Soc Nucl Med 57(5):721–727

    Google Scholar 

  61. Scher HI et al (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol Off J Am Soc Clin Oncol 26(7):1148–1159

    CrossRef  Google Scholar 

  62. McCarthy M et al (2011) (1)(8)F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging 38(1):14–22

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Picchio MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Incerti, E., Mapelli, P., Picchio, M. (2017). Detection of Bone Metastases and Evaluation of Therapy Response in Prostate Cancer Patients by Radiolabelled Choline PET/CT. In: Bertoldo, F., Boccardo, F., Bombardieri, E., Evangelista, L., Valdagni, R. (eds) Bone Metastases from Prostate Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-42327-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42327-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42326-5

  • Online ISBN: 978-3-319-42327-2

  • eBook Packages: MedicineMedicine (R0)