Skip to main content

Nuclear Medicine Modalities to Image Bone Metastases with Bone-Targeting Agents: Conventional Scintigraphy and Positron-Emission Tomography

Abstract

99mTc-MDP whole-body bone scintigraphy is a sensitive, an available, and a relatively low-cost modality which is utilized for the evaluation of skeletal metastases from prostate cancer, in response to treatment and patient’s prognosis, using the bone scan index. However, due to tracer uptake by benign bone lesions such as inflammatory, degenerative, and traumatic changes, the method is not highly specific. To mitigate this shortcoming, the planar imaging is complemented with SPECT to better detect and localize the lesions. Also, application of hybrid SPECT/CT scan may provide both anatomic and functional data in a single study and more accurately differentiate metastatic from benign lesions.

The other technique that has been increasingly used during the last decade is 18F-NaF PET/CT. It provides better sensitivity, specificity, and spatial resolution as well as monitoring the response to treatment when compared with conventional bone scan. Furthermore, 18F-NaF PET/CT exhibits the occult metastases more accurately in lower PSA level.

Recently, the combination of 18F-NaF with other specific PET tracers (e.g., 18F-choline) in a single PET/CT (i.e., dual tracer PET/CT) is introduced as a promising imaging technique in the evaluation of prostate cancer patients which allows more accurate assessment of both skeletal and soft tissue malignancies.

In summary, we believe that based on increasing number of established PET/CT scanners and decreasing price for PET radiotracers, as well as better accuracy in detecting metastatic lesions, 18F-NaF PET/CT will supplant conventional 99mTc-MDP whole-body bone scintigraphy in the near future for evaluation of skeletal metastatic disease from prostate cancer.

Keywords

  • Prostate cancer
  • Bone metastases
  • 18F-NaF PET/CT
  • Bone scintigraphy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42327-2_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6

References

  1. Center MM, Jemal A, Lortet-Tieulent J et al (2012) International variation in prostate cancer incidence and mortality rates. Eur Urol 61:1079–1092

    CrossRef  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    CAS  CrossRef  PubMed  Google Scholar 

  3. Castro E, Goh C, Olmos D et al (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31:1748–1757

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Goh CL, Eeles RA (2014) Germline genetic variants associated with prostate cancer and potential relevance to clinical practice. Recent Results Cancer Res 202:9–26

    CAS  CrossRef  PubMed  Google Scholar 

  5. Hemminki K, Ankerst DP, Sundquist J, Mousavi SM (2013) Prostate cancer incidence and survival in immigrants to Sweden. World J Urol 31:1483–1488

    CrossRef  PubMed  Google Scholar 

  6. Huncharek M, Haddock KS, Reid R, Kupelnick B (2010) Smoking as a risk factor for prostate cancer: a meta-analysis of 24 prospective cohort studies. Am J Public Health 100:693–701

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Karlsson R, Aly M, Clements M et al (2014) A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 65:169–176

    CAS  CrossRef  PubMed  Google Scholar 

  8. Kicinski M, Vangronsveld J, Nawrot TS (2011) An epidemiological reappraisal of the familial aggregation of prostate cancer: a meta-analysis. PLoS One 6, e27130

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Merrill RM, Sloan A (2012) Risk-adjusted incidence rates for prostate cancer in the United States. Prostate 72:181–185

    CrossRef  PubMed  Google Scholar 

  10. Zu K, Giovannucci E (2009) Smoking and aggressive prostate cancer: a review of the epidemiologic evidence. Cancer Causes Control 20:1799–1810

    CrossRef  PubMed  Google Scholar 

  11. Bastian PJ, Boorjian SA, Bossi A et al (2012) High-risk prostate cancer: from definition to contemporary management. Eur Urol 61:1096–1106

    CrossRef  PubMed  Google Scholar 

  12. Espey DK, Wu XC, Swan J et al (2007) Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska Natives. Cancer 110:2119–2152

    CrossRef  PubMed  Google Scholar 

  13. Farwell WR, Linder JA, Jha AK (2007) Trends in prostate-specific antigen testing from 1995 through 2004. Arch Intern Med 167:2497–2502

    CAS  CrossRef  PubMed  Google Scholar 

  14. Rigaud J, Tiguert R, Le Normand L et al (2002) Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol 168:1423–1426

    CrossRef  PubMed  Google Scholar 

  15. Fowler JE Jr, Sanders J, Bigler SA, Rigdon J, Kilambi NK, Land SA (2000) Percent free prostate specific antigen and cancer detection in black and white men with total prostate specific antigen 2.5 to 9.9 ng./ml. J Urol 163:1467–1470

    CrossRef  PubMed  Google Scholar 

  16. Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583

    CAS  CrossRef  PubMed  Google Scholar 

  17. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  18. Dennis ER, Jia X, Mezheritskiy IS et al (2012) Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol 30:519–524

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sorensen HT (2010) Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol 184:162–167

    CrossRef  PubMed  Google Scholar 

  20. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s

    CrossRef  PubMed  Google Scholar 

  21. Thoreson GR, Gayed BA, Chung PH, Raj GV (2014) Emerging therapies in castration resistant prostate cancer. Can J Urol 21:98–105

    PubMed  Google Scholar 

  22. Fogelman I (1982) Diphosphonate bone scanning agents – current concepts. Eur J Nucl Med 7:506–509

    CAS  PubMed  Google Scholar 

  23. Lam AS, Kettle AG, O’Doherty MJ, Coakley AJ, Barrington SF, Blower PJ (1997) Pentavalent 99Tcm-DMSA imaging in patients with bone metastases. Nucl Med Commun 18:907–914

    CAS  CrossRef  PubMed  Google Scholar 

  24. Lin J, Leung WT, Ho SK et al (1995) Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med 22:553–555

    CAS  CrossRef  PubMed  Google Scholar 

  25. Salvatore M, Carratu L, Porta E (1976) Thallium-201 as a positive indicator for lung neoplasms: preliminary experiments. Radiology 121:487–488

    CAS  CrossRef  PubMed  Google Scholar 

  26. Weiner RE (1996) The mechanism of 67Ga localization in malignant disease. Nucl Med Biol 23:745–751

    CAS  CrossRef  PubMed  Google Scholar 

  27. Fogelman I, Bessent RG, Cohen HN, Hart DM, Lindsay R (1980) Skeletal uptake of diphosphonate. Method for prediction of post-menopausal osteoporosis. Lancet 2:667–670

    CAS  CrossRef  PubMed  Google Scholar 

  28. Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ (2003) Radionuclide bone imaging: an illustrative review. Radiographics 23:341–358

    CrossRef  PubMed  Google Scholar 

  29. Bombardieri E, Setti L, Kirienko M, Antunovic L, Guglielmo P, Ciocia G (2015) Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion. Q J Nucl Med Mol Imaging 59:381–399

    CAS  PubMed  Google Scholar 

  30. Briganti A, Passoni N, Ferrari M et al (2010) When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol 57:551–558

    CrossRef  PubMed  Google Scholar 

  31. Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23:8253–8261

    CAS  CrossRef  PubMed  Google Scholar 

  32. National Institute for Clinical Excellence. Improving outcomes in urological cancers. 2002. London, UK. www.nice.org.uk.ISBN: 1-84257-210-5

  33. Minoves M (2003) Bone and joint sports injuries: the role of bone scintigraphy. Nucl Med Commun 24:3–10

    CrossRef  PubMed  Google Scholar 

  34. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44:331–335

    PubMed  Google Scholar 

  35. Krasnow AZ, Hellman RS, Timins ME, Collier BD, Anderson T, Isitman AT (1997) Diagnostic bone scanning in oncology. Semin Nucl Med 27:107–141

    CAS  CrossRef  PubMed  Google Scholar 

  36. Rosenthal DI (1997) Radiologic diagnosis of bone metastases. Cancer 80:1595–1607

    CAS  CrossRef  PubMed  Google Scholar 

  37. Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31:206–211

    CAS  CrossRef  PubMed  Google Scholar 

  38. Koizumi M, Matsumoto S, Takahashi S, Yamashita T, Ogata E (1999) Bone metabolic markers in the evaluation of bone scan flare phenomenon in bone metastases of breast cancer. Clin Nucl Med 24:15–20

    CAS  CrossRef  PubMed  Google Scholar 

  39. Horiuchi-Suzuki K, Konno A, Ueda M et al (2004) Skeletal affinity of Tc(V)-DMS is bone cell mediated and pH dependent. Eur J Nucl Med Mol Imaging 31:388–398

    CrossRef  PubMed  Google Scholar 

  40. Jacobson A, Fogelman I, Rosenthall L (1996) Skeletal nuclear medicine: bone scanning in metastatic disease. Mosby, St Louis, pp 87–123

    Google Scholar 

  41. O’Mara RE (1976) Skeletal scanning in neoplastic disease. Cancer 37:480–486

    CrossRef  PubMed  Google Scholar 

  42. Roland J, van den Weyngaert D, Krug B, Brans B, Scalliet P, Vandevivere J (1995) Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med 20:1052–1054

    CAS  CrossRef  PubMed  Google Scholar 

  43. Oesterling JE, Martin SK, Bergstralh EJ, Lowe FC (1993) The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 269:57–60

    CAS  CrossRef  PubMed  Google Scholar 

  44. Imbriaco M, Larson SM, Yeung HW et al (1998) A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res 4:1765–1772

    CAS  PubMed  Google Scholar 

  45. Ellis RE (1961) The distribution of active bone marrow in the adult. Phys Med Biol 5:255–258

    CAS  CrossRef  PubMed  Google Scholar 

  46. Meirelles GS, Schoder H, Ravizzini GC et al (2010) Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16:6093–6099

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Sabbatini P, Larson SM, Kremer A et al (1999) Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol 17:948–957

    CAS  PubMed  Google Scholar 

  48. Reza M, Bjartell A, Ohlsson M et al (2014) Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res 4:58

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaboteh R, Damber JE, Gjertsson P et al (2013) Bone Scan Index: a prognostic imaging biomarker for high-risk prostate cancer patients receiving primary hormonal therapy. EJNMMI Res 3:9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Sadik M, Suurkula M, Hoglund P, Jarund A, Edenbrandt L (2009) Improved classifications of planar whole-body bone scans using a computer-assisted diagnosis system: a multicenter, multiple-reader, multiple-case study. J Nucl Med 50:368–375

    CrossRef  PubMed  Google Scholar 

  51. Ulmert D, Kaboteh R, Fox JJ et al (2012) A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol 62:78–84

    CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Sarikaya I, Sarikaya A, Holder LE (2001) The role of single photon emission computed tomography in bone imaging. Semin Nucl Med 31:3–16

    CAS  CrossRef  PubMed  Google Scholar 

  53. Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med 45:27–37

    CAS  PubMed  Google Scholar 

  54. Sedonja I, Budihna NV (1999) The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med 24:407–413

    CAS  CrossRef  PubMed  Google Scholar 

  55. Savelli G, Chiti A, Grasselli G, Maccauro M, Rodari M, Bombardieri E (2000) The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res 20:1115–1120

    CAS  PubMed  Google Scholar 

  56. Gnanasegaran G, Barwick T, Adamson K, Mohan H, Sharp D, Fogelman I (2009) Multislice SPECT/CT in benign and malignant bone disease: when the ordinary turns into the extraordinary. Semin Nucl Med 39:431–442

    CrossRef  PubMed  Google Scholar 

  57. Romer W, Nomayr A, Uder M, Bautz W, Kuwert T (2006) SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 47:1102–1106

    PubMed  Google Scholar 

  58. Helyar V, Mohan HK, Barwick T et al (2010) The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging 37:706–713

    CrossRef  PubMed  Google Scholar 

  59. Ndlovu X, George R, Ellmann A, Warwick J (2010) Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies? Nucl Med Commun 31:659–665

    PubMed  Google Scholar 

  60. Sharma P, Dhull VS, Reddy RM et al (2013) Hybrid SPECT-CT for characterizing isolated vertebral lesions observed by bone scintigraphy: comparison with planar scintigraphy, SPECT, and CT. Diagn Interv Radiol 19:33–40

    PubMed  Google Scholar 

  61. Palmedo H, Marx C, Ebert A et al (2014) Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging 41:59–67

    CAS  CrossRef  PubMed  Google Scholar 

  62. Ghosh P (2014) The role of SPECT/CT in skeletal malignancies. Semin Musculoskelet Radiol 18:175–193

    CrossRef  PubMed  Google Scholar 

  63. Ben-Haim S, Israel O (2009) Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39:408–415

    CrossRef  PubMed  Google Scholar 

  64. Horger M, Eschmann SM, Pfannenberg C et al (2004) Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol 183:655–661

    CrossRef  PubMed  Google Scholar 

  65. Shen G, Deng H, Hu S, Jia Z (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 43:1503–1513

    CrossRef  PubMed  Google Scholar 

  66. Utsunomiya D, Shiraishi S, Imuta M et al (2006) Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 238:264–271

    CrossRef  PubMed  Google Scholar 

  67. Withofs N, Grayet B, Tancredi T et al (2011) 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun 32:168–176

    CrossRef  PubMed  Google Scholar 

  68. Schirrmeister H, Guhlmann A, Elsner K et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629

    CAS  PubMed  Google Scholar 

  69. Beheshti M, Langsteger W, Fogelman I (2009) Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39:396–407

    CrossRef  PubMed  Google Scholar 

  70. Poulsen MH, Petersen H, Hoilund-Carlsen PF et al (2014) Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography(PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int 114:818–823

    CAS  CrossRef  PubMed  Google Scholar 

  71. Wootton R, Dore C (1986) The single-passage extraction of 18F in rabbit bone. Clin Phys Physiol Meas 7:333–343

    CAS  CrossRef  PubMed  Google Scholar 

  72. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    CrossRef  PubMed  Google Scholar 

  73. Beheshti M, Mottaghy FM, Payche F et al (2015) 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 42:1767–1777

    CAS  CrossRef  PubMed  Google Scholar 

  74. Segall G, Delbeke D, Stabin MG et al (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 51:1813–1820

    CrossRef  PubMed  Google Scholar 

  75. Langsteger W, Balogova S, Huchet V et al (2011) Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 55:448–457

    CAS  PubMed  Google Scholar 

  76. Schirrmeister H (2007) Detection of bone metastases in breast cancer by positron emission tomography. Radiol Clin North Am 45:669–676, vi

    CrossRef  PubMed  Google Scholar 

  77. Cook GJ, Fogelman I (1999) Skeletal metastases from breast cancer: imaging with nuclear medicine. Semin Nucl Med 29:69–79

    CAS  CrossRef  PubMed  Google Scholar 

  78. Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92

    CrossRef  PubMed  Google Scholar 

  79. Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol 186:1783–1786

    CrossRef  PubMed  Google Scholar 

  80. Hillner BE, Siegel BA, Hanna L, Duan F, Quinn B, Shields AF (2015) 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the National Oncologic PET Registry. J Nucl Med 56:222–228

    CAS  CrossRef  PubMed  Google Scholar 

  81. Apolo AB, Lindenberg L, Shih JH et al (2016) Prospective study evaluating Na18F-positron emission tomography/computed tomography (NaF-PET/CT) in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med 57:886–892

    CrossRef  PubMed  Google Scholar 

  82. Blau M, Ganatra R, Bender MA (1972) 18 F-fluoride for bone imaging. Semin Nucl Med 2:31–37

    CAS  CrossRef  PubMed  Google Scholar 

  83. Evangelista L, Bertoldo F, Boccardo F et al (2016) Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging 43:1546–1562

    CAS  CrossRef  PubMed  Google Scholar 

  84. Park-Holohan SJ, Blake GM, Fogelman I (2001) Quantitative studies of bone using (18)F-fluoride and (99m)Tc-methylene diphosphonate: evaluation of renal and whole-blood kinetics. Nucl Med Commun 22:1037–1044

    CAS  CrossRef  PubMed  Google Scholar 

  85. Araz M, Aras G, Kucuk ON (2015) The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol 4:92–97

    CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Beheshti M, Vali R, Waldenberger P et al (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35:1766–1774

    CrossRef  PubMed  Google Scholar 

  87. Damle NA, Bal C, Bandopadhyaya GP et al (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31:262–269

    CrossRef  PubMed  Google Scholar 

  88. Iagaru A, Mittra E, Dick DW, Gambhir SS (2012) Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 14:252–259

    CrossRef  PubMed  Google Scholar 

  89. Minamimoto R, Loening A, Jamali M et al (2015) Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med 56:1862–1868

    CrossRef  CAS  PubMed  Google Scholar 

  90. Zukotynski KA, Kim CK, Gerbaudo VH et al (2015) 18F-FDG-PET/CT and 18F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging 5:72–82

    CAS  PubMed  Google Scholar 

  91. Jadvar H, Desai B, Ji L et al (2012) Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med 37:637–643

    CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Rosen RS, Fayad L, Wahl RL (2006) Increased 18F-FDG uptake in degenerative disease of the spine: characterization with 18F-FDG PET/CT. J Nucl Med 47:1274–1280

    CAS  PubMed  Google Scholar 

  93. Muzahir S, Jeraj R, Liu G et al (2015) Differentiation of metastatic vs degenerative joint disease using semi-quantitative analysis with (18)F-NaF PET/CT in castrate resistant prostate cancer patients. Am J Nucl Med Mol Imaging 5:162–168

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vali R, Beheshti M, Waldenberger P et al (2008) Assessment of malignant and benign bone lesions by static F-18 Fluoride PET-CT: Additional value of SUV! J Nucl Med 49(Supplement 1):150P

    Google Scholar 

  95. Beauregard JM, Blouin AC, Fradet V et al (2015) FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging 15:2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  96. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108–111

    CAS  CrossRef  PubMed  Google Scholar 

  97. Iagaru A, Mittra E, Mosci C et al (2013) Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 54:176–183

    CAS  CrossRef  PubMed  Google Scholar 

  98. Jadvar H, Pinski JK, Conti PS (2003) FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep 10:1485–1488

    PubMed  Google Scholar 

  99. Shiiba M, Ishihara K, Kimura G et al (2012) Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med 26:138–145

    CrossRef  PubMed  Google Scholar 

  100. Iagaru A, Mittra E, Yaghoubi SS et al (2009) Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 50:501–505

    CrossRef  PubMed  Google Scholar 

  101. Lin FI, Rao JE, Mittra ES et al (2012) Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging 39:262–270

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Beheshti MD, FEBNM, FASNC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Langsteger, W., Rezaee, A., Beheshti, M. (2017). Nuclear Medicine Modalities to Image Bone Metastases with Bone-Targeting Agents: Conventional Scintigraphy and Positron-Emission Tomography. In: Bertoldo, F., Boccardo, F., Bombardieri, E., Evangelista, L., Valdagni, R. (eds) Bone Metastases from Prostate Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-42327-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42327-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42326-5

  • Online ISBN: 978-3-319-42327-2

  • eBook Packages: MedicineMedicine (R0)