Center MM, Jemal A, Lortet-Tieulent J et al (2012) International variation in prostate cancer incidence and mortality rates. Eur Urol 61:1079–1092
CrossRef
PubMed
Google Scholar
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917
CAS
CrossRef
PubMed
Google Scholar
Castro E, Goh C, Olmos D et al (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31:1748–1757
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Goh CL, Eeles RA (2014) Germline genetic variants associated with prostate cancer and potential relevance to clinical practice. Recent Results Cancer Res 202:9–26
CAS
CrossRef
PubMed
Google Scholar
Hemminki K, Ankerst DP, Sundquist J, Mousavi SM (2013) Prostate cancer incidence and survival in immigrants to Sweden. World J Urol 31:1483–1488
CrossRef
PubMed
Google Scholar
Huncharek M, Haddock KS, Reid R, Kupelnick B (2010) Smoking as a risk factor for prostate cancer: a meta-analysis of 24 prospective cohort studies. Am J Public Health 100:693–701
CrossRef
PubMed
PubMed Central
Google Scholar
Karlsson R, Aly M, Clements M et al (2014) A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 65:169–176
CAS
CrossRef
PubMed
Google Scholar
Kicinski M, Vangronsveld J, Nawrot TS (2011) An epidemiological reappraisal of the familial aggregation of prostate cancer: a meta-analysis. PLoS One 6, e27130
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Merrill RM, Sloan A (2012) Risk-adjusted incidence rates for prostate cancer in the United States. Prostate 72:181–185
CrossRef
PubMed
Google Scholar
Zu K, Giovannucci E (2009) Smoking and aggressive prostate cancer: a review of the epidemiologic evidence. Cancer Causes Control 20:1799–1810
CrossRef
PubMed
Google Scholar
Bastian PJ, Boorjian SA, Bossi A et al (2012) High-risk prostate cancer: from definition to contemporary management. Eur Urol 61:1096–1106
CrossRef
PubMed
Google Scholar
Espey DK, Wu XC, Swan J et al (2007) Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska Natives. Cancer 110:2119–2152
CrossRef
PubMed
Google Scholar
Farwell WR, Linder JA, Jha AK (2007) Trends in prostate-specific antigen testing from 1995 through 2004. Arch Intern Med 167:2497–2502
CAS
CrossRef
PubMed
Google Scholar
Rigaud J, Tiguert R, Le Normand L et al (2002) Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol 168:1423–1426
CrossRef
PubMed
Google Scholar
Fowler JE Jr, Sanders J, Bigler SA, Rigdon J, Kilambi NK, Land SA (2000) Percent free prostate specific antigen and cancer detection in black and white men with total prostate specific antigen 2.5 to 9.9 ng./ml. J Urol 163:1467–1470
CrossRef
PubMed
Google Scholar
Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583
CAS
CrossRef
PubMed
Google Scholar
Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297
PubMed
Google Scholar
Dennis ER, Jia X, Mezheritskiy IS et al (2012) Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol 30:519–524
CrossRef
PubMed
PubMed Central
Google Scholar
Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sorensen HT (2010) Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol 184:162–167
CrossRef
PubMed
Google Scholar
Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s
CrossRef
PubMed
Google Scholar
Thoreson GR, Gayed BA, Chung PH, Raj GV (2014) Emerging therapies in castration resistant prostate cancer. Can J Urol 21:98–105
PubMed
Google Scholar
Fogelman I (1982) Diphosphonate bone scanning agents – current concepts. Eur J Nucl Med 7:506–509
CAS
PubMed
Google Scholar
Lam AS, Kettle AG, O’Doherty MJ, Coakley AJ, Barrington SF, Blower PJ (1997) Pentavalent 99Tcm-DMSA imaging in patients with bone metastases. Nucl Med Commun 18:907–914
CAS
CrossRef
PubMed
Google Scholar
Lin J, Leung WT, Ho SK et al (1995) Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med 22:553–555
CAS
CrossRef
PubMed
Google Scholar
Salvatore M, Carratu L, Porta E (1976) Thallium-201 as a positive indicator for lung neoplasms: preliminary experiments. Radiology 121:487–488
CAS
CrossRef
PubMed
Google Scholar
Weiner RE (1996) The mechanism of 67Ga localization in malignant disease. Nucl Med Biol 23:745–751
CAS
CrossRef
PubMed
Google Scholar
Fogelman I, Bessent RG, Cohen HN, Hart DM, Lindsay R (1980) Skeletal uptake of diphosphonate. Method for prediction of post-menopausal osteoporosis. Lancet 2:667–670
CAS
CrossRef
PubMed
Google Scholar
Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ (2003) Radionuclide bone imaging: an illustrative review. Radiographics 23:341–358
CrossRef
PubMed
Google Scholar
Bombardieri E, Setti L, Kirienko M, Antunovic L, Guglielmo P, Ciocia G (2015) Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion. Q J Nucl Med Mol Imaging 59:381–399
CAS
PubMed
Google Scholar
Briganti A, Passoni N, Ferrari M et al (2010) When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol 57:551–558
CrossRef
PubMed
Google Scholar
Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23:8253–8261
CAS
CrossRef
PubMed
Google Scholar
National Institute for Clinical Excellence. Improving outcomes in urological cancers. 2002. London, UK. www.nice.org.uk.ISBN: 1-84257-210-5
Minoves M (2003) Bone and joint sports injuries: the role of bone scintigraphy. Nucl Med Commun 24:3–10
CrossRef
PubMed
Google Scholar
de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44:331–335
PubMed
Google Scholar
Krasnow AZ, Hellman RS, Timins ME, Collier BD, Anderson T, Isitman AT (1997) Diagnostic bone scanning in oncology. Semin Nucl Med 27:107–141
CAS
CrossRef
PubMed
Google Scholar
Rosenthal DI (1997) Radiologic diagnosis of bone metastases. Cancer 80:1595–1607
CAS
CrossRef
PubMed
Google Scholar
Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31:206–211
CAS
CrossRef
PubMed
Google Scholar
Koizumi M, Matsumoto S, Takahashi S, Yamashita T, Ogata E (1999) Bone metabolic markers in the evaluation of bone scan flare phenomenon in bone metastases of breast cancer. Clin Nucl Med 24:15–20
CAS
CrossRef
PubMed
Google Scholar
Horiuchi-Suzuki K, Konno A, Ueda M et al (2004) Skeletal affinity of Tc(V)-DMS is bone cell mediated and pH dependent. Eur J Nucl Med Mol Imaging 31:388–398
CrossRef
PubMed
Google Scholar
Jacobson A, Fogelman I, Rosenthall L (1996) Skeletal nuclear medicine: bone scanning in metastatic disease. Mosby, St Louis, pp 87–123
Google Scholar
O’Mara RE (1976) Skeletal scanning in neoplastic disease. Cancer 37:480–486
CrossRef
PubMed
Google Scholar
Roland J, van den Weyngaert D, Krug B, Brans B, Scalliet P, Vandevivere J (1995) Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med 20:1052–1054
CAS
CrossRef
PubMed
Google Scholar
Oesterling JE, Martin SK, Bergstralh EJ, Lowe FC (1993) The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 269:57–60
CAS
CrossRef
PubMed
Google Scholar
Imbriaco M, Larson SM, Yeung HW et al (1998) A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res 4:1765–1772
CAS
PubMed
Google Scholar
Ellis RE (1961) The distribution of active bone marrow in the adult. Phys Med Biol 5:255–258
CAS
CrossRef
PubMed
Google Scholar
Meirelles GS, Schoder H, Ravizzini GC et al (2010) Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16:6093–6099
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sabbatini P, Larson SM, Kremer A et al (1999) Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol 17:948–957
CAS
PubMed
Google Scholar
Reza M, Bjartell A, Ohlsson M et al (2014) Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res 4:58
CrossRef
CAS
PubMed
PubMed Central
Google Scholar
Kaboteh R, Damber JE, Gjertsson P et al (2013) Bone Scan Index: a prognostic imaging biomarker for high-risk prostate cancer patients receiving primary hormonal therapy. EJNMMI Res 3:9
CrossRef
PubMed
PubMed Central
Google Scholar
Sadik M, Suurkula M, Hoglund P, Jarund A, Edenbrandt L (2009) Improved classifications of planar whole-body bone scans using a computer-assisted diagnosis system: a multicenter, multiple-reader, multiple-case study. J Nucl Med 50:368–375
CrossRef
PubMed
Google Scholar
Ulmert D, Kaboteh R, Fox JJ et al (2012) A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol 62:78–84
CrossRef
PubMed
PubMed Central
Google Scholar
Sarikaya I, Sarikaya A, Holder LE (2001) The role of single photon emission computed tomography in bone imaging. Semin Nucl Med 31:3–16
CAS
CrossRef
PubMed
Google Scholar
Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E (2001) Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med 45:27–37
CAS
PubMed
Google Scholar
Sedonja I, Budihna NV (1999) The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med 24:407–413
CAS
CrossRef
PubMed
Google Scholar
Savelli G, Chiti A, Grasselli G, Maccauro M, Rodari M, Bombardieri E (2000) The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res 20:1115–1120
CAS
PubMed
Google Scholar
Gnanasegaran G, Barwick T, Adamson K, Mohan H, Sharp D, Fogelman I (2009) Multislice SPECT/CT in benign and malignant bone disease: when the ordinary turns into the extraordinary. Semin Nucl Med 39:431–442
CrossRef
PubMed
Google Scholar
Romer W, Nomayr A, Uder M, Bautz W, Kuwert T (2006) SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 47:1102–1106
PubMed
Google Scholar
Helyar V, Mohan HK, Barwick T et al (2010) The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging 37:706–713
CrossRef
PubMed
Google Scholar
Ndlovu X, George R, Ellmann A, Warwick J (2010) Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies? Nucl Med Commun 31:659–665
PubMed
Google Scholar
Sharma P, Dhull VS, Reddy RM et al (2013) Hybrid SPECT-CT for characterizing isolated vertebral lesions observed by bone scintigraphy: comparison with planar scintigraphy, SPECT, and CT. Diagn Interv Radiol 19:33–40
PubMed
Google Scholar
Palmedo H, Marx C, Ebert A et al (2014) Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging 41:59–67
CAS
CrossRef
PubMed
Google Scholar
Ghosh P (2014) The role of SPECT/CT in skeletal malignancies. Semin Musculoskelet Radiol 18:175–193
CrossRef
PubMed
Google Scholar
Ben-Haim S, Israel O (2009) Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39:408–415
CrossRef
PubMed
Google Scholar
Horger M, Eschmann SM, Pfannenberg C et al (2004) Evaluation of combined transmission and emission tomography for classification of skeletal lesions. AJR Am J Roentgenol 183:655–661
CrossRef
PubMed
Google Scholar
Shen G, Deng H, Hu S, Jia Z (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 43:1503–1513
CrossRef
PubMed
Google Scholar
Utsunomiya D, Shiraishi S, Imuta M et al (2006) Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology 238:264–271
CrossRef
PubMed
Google Scholar
Withofs N, Grayet B, Tancredi T et al (2011) 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun 32:168–176
CrossRef
PubMed
Google Scholar
Schirrmeister H, Guhlmann A, Elsner K et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629
CAS
PubMed
Google Scholar
Beheshti M, Langsteger W, Fogelman I (2009) Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 39:396–407
CrossRef
PubMed
Google Scholar
Poulsen MH, Petersen H, Hoilund-Carlsen PF et al (2014) Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography(PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int 114:818–823
CAS
CrossRef
PubMed
Google Scholar
Wootton R, Dore C (1986) The single-passage extraction of 18F in rabbit bone. Clin Phys Physiol Meas 7:333–343
CAS
CrossRef
PubMed
Google Scholar
Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78
CrossRef
PubMed
Google Scholar
Beheshti M, Mottaghy FM, Payche F et al (2015) 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 42:1767–1777
CAS
CrossRef
PubMed
Google Scholar
Segall G, Delbeke D, Stabin MG et al (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 51:1813–1820
CrossRef
PubMed
Google Scholar
Langsteger W, Balogova S, Huchet V et al (2011) Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 55:448–457
CAS
PubMed
Google Scholar
Schirrmeister H (2007) Detection of bone metastases in breast cancer by positron emission tomography. Radiol Clin North Am 45:669–676, vi
CrossRef
PubMed
Google Scholar
Cook GJ, Fogelman I (1999) Skeletal metastases from breast cancer: imaging with nuclear medicine. Semin Nucl Med 29:69–79
CAS
CrossRef
PubMed
Google Scholar
Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92
CrossRef
PubMed
Google Scholar
Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol 186:1783–1786
CrossRef
PubMed
Google Scholar
Hillner BE, Siegel BA, Hanna L, Duan F, Quinn B, Shields AF (2015) 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the National Oncologic PET Registry. J Nucl Med 56:222–228
CAS
CrossRef
PubMed
Google Scholar
Apolo AB, Lindenberg L, Shih JH et al (2016) Prospective study evaluating Na18F-positron emission tomography/computed tomography (NaF-PET/CT) in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med 57:886–892
CrossRef
PubMed
Google Scholar
Blau M, Ganatra R, Bender MA (1972) 18 F-fluoride for bone imaging. Semin Nucl Med 2:31–37
CAS
CrossRef
PubMed
Google Scholar
Evangelista L, Bertoldo F, Boccardo F et al (2016) Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging 43:1546–1562
CAS
CrossRef
PubMed
Google Scholar
Park-Holohan SJ, Blake GM, Fogelman I (2001) Quantitative studies of bone using (18)F-fluoride and (99m)Tc-methylene diphosphonate: evaluation of renal and whole-blood kinetics. Nucl Med Commun 22:1037–1044
CAS
CrossRef
PubMed
Google Scholar
Araz M, Aras G, Kucuk ON (2015) The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol 4:92–97
CrossRef
PubMed
PubMed Central
Google Scholar
Beheshti M, Vali R, Waldenberger P et al (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35:1766–1774
CrossRef
PubMed
Google Scholar
Damle NA, Bal C, Bandopadhyaya GP et al (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31:262–269
CrossRef
PubMed
Google Scholar
Iagaru A, Mittra E, Dick DW, Gambhir SS (2012) Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 14:252–259
CrossRef
PubMed
Google Scholar
Minamimoto R, Loening A, Jamali M et al (2015) Prospective comparison of 99mTc-MDP scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med 56:1862–1868
CrossRef
CAS
PubMed
Google Scholar
Zukotynski KA, Kim CK, Gerbaudo VH et al (2015) 18F-FDG-PET/CT and 18F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging 5:72–82
CAS
PubMed
Google Scholar
Jadvar H, Desai B, Ji L et al (2012) Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med 37:637–643
CrossRef
PubMed
PubMed Central
Google Scholar
Rosen RS, Fayad L, Wahl RL (2006) Increased 18F-FDG uptake in degenerative disease of the spine: characterization with 18F-FDG PET/CT. J Nucl Med 47:1274–1280
CAS
PubMed
Google Scholar
Muzahir S, Jeraj R, Liu G et al (2015) Differentiation of metastatic vs degenerative joint disease using semi-quantitative analysis with (18)F-NaF PET/CT in castrate resistant prostate cancer patients. Am J Nucl Med Mol Imaging 5:162–168
CAS
PubMed
PubMed Central
Google Scholar
Vali R, Beheshti M, Waldenberger P et al (2008) Assessment of malignant and benign bone lesions by static F-18 Fluoride PET-CT: Additional value of SUV! J Nucl Med 49(Supplement 1):150P
Google Scholar
Beauregard JM, Blouin AC, Fradet V et al (2015) FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging 15:2
CrossRef
PubMed
PubMed Central
Google Scholar
Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108–111
CAS
CrossRef
PubMed
Google Scholar
Iagaru A, Mittra E, Mosci C et al (2013) Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 54:176–183
CAS
CrossRef
PubMed
Google Scholar
Jadvar H, Pinski JK, Conti PS (2003) FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep 10:1485–1488
PubMed
Google Scholar
Shiiba M, Ishihara K, Kimura G et al (2012) Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med 26:138–145
CrossRef
PubMed
Google Scholar
Iagaru A, Mittra E, Yaghoubi SS et al (2009) Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 50:501–505
CrossRef
PubMed
Google Scholar
Lin FI, Rao JE, Mittra ES et al (2012) Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur J Nucl Med Mol Imaging 39:262–270
CAS
CrossRef
PubMed
Google Scholar