Skip to main content

Bone Homing and Metastasis

  • 1304 Accesses

Abstract

Bone metastasization is a frequent event for a variety of cancer cells, including breast, prostate, lung, and thyroid tumors. In these diseases, the rate of bone involvement can overcome 70 %, for a total of more than 350,000 patients/year died in the United States with bone metastasis (BMs) [1, 2].

Keywords

  • Abiraterone Acetate
  • Bone Microenvironment
  • Cellular Plasticity
  • Chelerythrine Chloride
  • Prostate CSCs

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42327-2_3
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  1. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249s

    CrossRef  PubMed  Google Scholar 

  2. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593

    CAS  CrossRef  PubMed  Google Scholar 

  3. Mishra A, Shiozawa Y, Pienta KJ, Taichman RS (2011) Homing of cancer cells to the bone. Cancer Microenviron 4(3):221–235

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93–106

    CAS  CrossRef  PubMed  Google Scholar 

  5. Pietilä M, Ivaska J, Mani SA (2016) Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment? Cancer Lett. pii: S0304-3835(16)00005-7

    Google Scholar 

  6. Santoni M, Conti A, Porta C, Procopio G, Sternberg CN, Basso U, De Giorgi U, Bracarda S, Rizzo M, Ortega C, Massari F, Iacovelli R, Derosa L, Masini C, Milella M, Di Lorenzo G, Atzori F, Pagano M, Buti S, De Vivo R, Mosca A, Rossi M, Paglino C, Verzoni E, Cerbone L, Muzzonigro G, Falconi M, Montironi R, Burattini L, Santini D, Cascinu S (2014) Sunitinib, pazopanib or sorafenib for the treatment of patients with late-relapsing (>5 years) metastatic renal cell carcinoma. J Urol 193(1):41–47, pii: S0022-5347(14)03958-5

    CrossRef  PubMed  Google Scholar 

  7. Santoni M, Conti A, Procopio G, Porta C, Ibrahim T, Barni S, Guida FM, Fontana A, Berruti A, Berardi R, Massari F, Vincenzi B, Ortega C, Ottaviani D, Carteni G, Lanzetta G, De Lisi D, Silvestris N, Satolli MA, Collovà E, Russo A, Badalamenti G, Luzi Fedeli S, Tanca FM, Adamo V, Maiello E, Sabbatini R, Felici A, Cinieri S, Montironi R, Bracarda S, Tonini G, Cascinu S, Santini D (2015) Bone metastases in patients with metastatic renal cell carcinoma: are they always associated with poor prognosis? J Exp Clin Cancer Res 34:10

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5(16):1744–1750

    CAS  CrossRef  PubMed  Google Scholar 

  9. Morgan TM et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2):677–683

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Halabi S, Kelly WK, Ma H, Zhou H, Solomon NC, Fizazi K, Tangen CM, Rosenthal M, Petrylak DP, Hussain M, Vogelzang NJ, Thompson IM, Chi KN, de Bono J, Armstrong AJ, Eisenberger MA, Fandi A, Li S, Araujo JC, Logothetis CJ, Quinn DI, Morris MJ, Higano CS, Tannock IF, Small EJ (2016) Meta-analysis evaluating the impact of site of metastasis on overall survival in men with castration-resistant prostate cancer. J Clin Oncol 34(14):1652–1659, pii: JCO657270

    CrossRef  PubMed  Google Scholar 

  11. Arnold RS, Fedewa SA, Goodman M, Osunkoya AO, Kissick HT, Morrissey C et al (2015) Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone 78:81–86

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Zalucha JL, Jung Y, Joseph J, Wang J, Berry JE, Shiozawa Y et al (2015) The role of osteoclasts in early dissemination of prostate cancer tumor cells. J Cancer Stem Cell Res 3. pii: e1005

    Google Scholar 

  13. Vicente-Dueñas C, Gutiérrez de Diego J, Rodríguez FD, Jiménez R, Cobaleda C (2009) The role of cellular plasticity in cancer development. Curr Med Chem 16(28):3676–3685

    CrossRef  PubMed  Google Scholar 

  14. Xu J, Wang R, Xie ZH, Odero-Marah V, Pathak S, Multani A et al (2006) Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate 66(15):1664–1673

    CAS  CrossRef  PubMed  Google Scholar 

  15. Liu S, Cong Y, Wang D et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2(1):78–91

    CAS  CrossRef  PubMed  Google Scholar 

  16. D’Amico L, Patanè S, Grange C et al (2013) Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. Br J Cancer 108(12):2525–2536

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Jadaan DY, Jadaan MM, McCabe JP (2015) Cellular plasticity in prostate cancer bone metastasis. Prostate Cancer 651580. doi:10.1155/2015/651580

  18. Zhau HE, Odero-Marah V, Lue H-W et al (2008) Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 25(6):601–610

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Josson S, Sharp S, Sung S-Y et al (2010) Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. J Oncol 2010:10. doi:10.1155/2010/232831.232831

    CrossRef  Google Scholar 

  20. Conley SJ, Gheordunescu E, Kakarala P et al (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109(8):2784–2789

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Chu K, Boley KM, Moraes R, Barsky SH, Robertson FM (2013) The paradox of E-cadherin: role in response to hypoxia in the tumor microenvironment and regulation of energy metabolism. Oncotarget 4(3):446–462

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Bishop JL, Davies A, Ketola K, Zoubeidi A (2015) Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. EndocrRelat Cancer 22(3):R165–R182

    CAS  CrossRef  Google Scholar 

  23. Santoni M, Conti A, Burattini L, Berardi R, Scarpelli M, Cheng L et al (2014) Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives. Biochim Biophys Acta 1846(2):630–637

    CAS  PubMed  Google Scholar 

  24. Iuliani M, Pantano F, Buttigliero C, Fioramonti M, Bertaglia V, Vincenzi B et al (2015) Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget 6(14):12520–12528

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Boyer B, Thiery JP (1993) Epithelium-mesenchyme interconversion as example of epithelial plasticity. APMIS 101:257–268

    CAS  CrossRef  PubMed  Google Scholar 

  26. Hay ED (1995) An overview of epithelio–mesenchymal transformation. Acta Anat (Basel) 154:8–20

    CAS  CrossRef  Google Scholar 

  27. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    CAS  CrossRef  PubMed  Google Scholar 

  28. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199

    CAS  PubMed  Google Scholar 

  29. Kuo YC, Su CH, Liu CY, Chen TH, Chen CP, Wang HS (2009) Transforming growth factor-β induces CD44 cleavage that promotes migration of MDA-MB-435s cells through the up-regulation of membrane type 1-matrix metalloproteinase. Int J Cancer 124:2568–2576

    CAS  CrossRef  PubMed  Google Scholar 

  30. Bates RC, Bellovin DI, Brown C, Maynard E, Wu B, Kawakatsu H, Sheppard D, Oettgen P, Mercurio AM (2005) Transcriptional activation of integrin β6 during the epithelial–mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest 115:339–347

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Montironi R, Santoni M, Scarpelli M, Piva F, Lopez-Beltran A, Cheng L, Briganti A, Montorsi F (2015) Re: epithelial-to-mesenchymal transition in renal neoplasms. Eur Urol 68(4):736–737

    CrossRef  PubMed  Google Scholar 

  32. Piva F, Giulietti M, Santoni M, Occhipinti G, Scarpelli M, Lopez-Beltran A, Cheng L, Principato G, Montironi R (2016) Epithelial to mesenchymal transition in renal cell carcinoma: implications for cancer therapy. Mol Diagn Ther 20(2):111–117

    CAS  CrossRef  PubMed  Google Scholar 

  33. Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66(23):11271–11278

    CAS  CrossRef  PubMed  Google Scholar 

  34. Bae KM, Parker NN, Dai Y, Vieweg J, Siemann DW (2011) E-cadherin plasticity in prostate cancer stem cell invasion. Am J Cancer Res 1(1):71–84

    CAS  PubMed  Google Scholar 

  35. Shiota M, Itsumi M, Takeuchi A, Imada K, Yokomizo A, Kuruma H, Inokuchi J, Tatsugami K, Uchiumi T, Oda Y, Naito S (2015) Crosstalk between epithelial-mesenchymal transition and castration resistance mediated by Twist1/AR signaling in prostate cancer. Endocr Relat Cancer 22(6):889–900

    CAS  CrossRef  PubMed  Google Scholar 

  36. Fournier PG, Juárez P, Jiang G, Clines GA, Niewolna M, Kim HS et al (2015) The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27(6):809–821

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Haider M, Zhang X, Coleman I, Ericson N, True LD, Lam HM, Brown LG, Ketchanji M, Nghiem B, Lakely B, Coleman R, Montgomery B, Lange PH, Roudier M, Higano CS, Bielas JH, Nelson PS, Vessella RL, Morrissey C (2016) Epithelial mesenchymal-like transition occurs in a subset of cells in castration resistant prostate cancer bone metastases. Clin Exp Metastasis 33(3):239–248

    CAS  CrossRef  PubMed  Google Scholar 

  38. Bae K-M, Su Z, Frye C et al (2010) Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol 183(5):2045–2053

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Celià-Terrassa T, Meca-Cortés Ó, Mateo F et al (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 122(5):1849–1868

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Liu YN, Liu Y, Lee HJ et al (2008) Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol 28:7096–7108

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Makrilia N, Kollias A, Manolopoulos L et al (2009) Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 27:1023–1037

    CAS  CrossRef  PubMed  Google Scholar 

  42. Gravdal K, Halvorsen OJ, Haukaas SA et al (2007) A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13:7003–7011

    CAS  CrossRef  PubMed  Google Scholar 

  43. Tanaka H, Kono E, Tran CP et al (2010) Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med 16:1414–1420

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Santoni M, Bracarda S, Nabissi M, Massari F, Conti A, Bria E, Tortora G, Santoni G, Cascinu S (2014) CXC and CC chemokines as angiogenic modulators in non-haematological tumors. Biomed Res Int 2014:768758

    CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    CAS  CrossRef  PubMed  Google Scholar 

  46. Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12:593–633

    CAS  CrossRef  PubMed  Google Scholar 

  47. Taichman RS et al (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62(6):1832–1837

    CAS  PubMed  Google Scholar 

  48. Hsiao JJ, Ng BH, Smits MM, Wang J, Jasavala RJ, Martinez HD et al (2015) Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility. BMC Cancer 15:204

    CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Eaton CL, Colombel M, van der Pluijm G, Cecchini M, Wetterwald A, Lippitt J et al (2010) Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate 70(8):875–882

    PubMed  Google Scholar 

  51. Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, Kruizinga RC, Ananias HJ et al (2012) CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia 14:709–718

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Fu Q, Liu X, Liu Y, Yang J, Lv G, Dong S (2015) MicroRNA-335 and −543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med 36(5):1417–1425

    CAS  PubMed  Google Scholar 

  53. Bonci D, Coppola V, Patrizii M, Addario A, Cannistraci A, Francescangeli F et al (2015) A microRNA code for prostate cancer metastasis. Oncogene. doi:10.1038/onc.2015.176

    PubMed  PubMed Central  Google Scholar 

  54. Chang YS, Chen WY, Yin JJ, Sheppard-Tillman H, Huang J, Liu YN (2015) EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res 75(15):3077–3086

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Song G, Tan W, Qi M, Zhang L, Chan J, Yu J, Han J, Han B (2015) MiR-573 inhibits prostate cancer metastasis by regulating epithelial-mesenchymal transition. Oncotarget 6(34):35978–35990

    PubMed  PubMed Central  Google Scholar 

  56. Li X, Liu Y, Wu B, Dong Z, Wang Y, Lu J et al (2014) Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol Rep 32(6):2605–2611

    CAS  PubMed  Google Scholar 

  57. Hall CL, Kang S, MacDougald OA, Keller ET (2006) Role of Wnts in prostate cancer bone metastases. J Cell Biochem 97(4):661–672

    CAS  CrossRef  PubMed  Google Scholar 

  58. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    CAS  CrossRef  PubMed  Google Scholar 

  59. Miller J et al (2002) The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat Genet 32(4):645–649

    CAS  CrossRef  PubMed  Google Scholar 

  60. Miftakhova R, Hedblom A, Semenas J, Robinson BD, Simoulis A, Malm J, Rizvanov A, David Heery D, Mongan NP, Maitland NJ, Allegrucci C, Persson JL (2016) Cyclin A1 and P450 aromatase promote metastatic homing and growth of stem-like prostate cancer cells in the bone marrow. Cancer Res 76(8):2453–2464, pii: canres.2340.2015

    CAS  CrossRef  PubMed  Google Scholar 

  61. Hauschka PV et al (1986) Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem 261(27):12665–12674

    CAS  PubMed  Google Scholar 

  62. Golen CM et al (2006) Insulin-such as growth factor-I receptor expression regulates neuroblastoma metastasis to bone. Cancer Res 66(13):6570–6578

    CrossRef  PubMed  Google Scholar 

  63. Christopherson KW 2nd, Hangoc G, Broxmeyer HE (2002) Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169(12):7000–7008

    CAS  CrossRef  PubMed  Google Scholar 

  64. Webb SD, Sherratt JA, Fish RG (1999) Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model. Clin Exp Metastasis 17(5):397–407

    CAS  CrossRef  PubMed  Google Scholar 

  65. Sanders JL et al (2001) Ca(2+)-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab 281(6):1267–1274

    Google Scholar 

  66. Cho WJ, Oliveira DS, Najy AJ, Mainetti LE, Aoun HD, Cher ML, Heath E, Kim HR, Bonfil RD (2016) Gene expression analysis of bone metastasis and circulating tumor cells from metastatic castrate-resistant prostate cancer patients. J Transl Med 14(1):72

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Montironi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santoni, M. et al. (2017). Bone Homing and Metastasis. In: Bertoldo, F., Boccardo, F., Bombardieri, E., Evangelista, L., Valdagni, R. (eds) Bone Metastases from Prostate Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-42327-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42327-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42326-5

  • Online ISBN: 978-3-319-42327-2

  • eBook Packages: MedicineMedicine (R0)