Skip to main content

Approaches for Assessment of Response of Bone Metastases to Therapies

  • 1304 Accesses

Abstract

The recent introduction of new therapeutic agents has proven alternative options in the management of patients with metastatic castration-resistant prostate cancer (mCRPC). Moreover, other novel agents are being studied and developed. Bone represents the most common site of recurrence in mCRPC, occurring in more than 80 % of cases. The evaluation of treatment efficacy in bone metastatic prostate cancer (PC) is mainly focused on the assessment of patient outcomes, but the behavior of bone metastases and their changes due to the therapy are also of great interest. The impressive development of technologies offers today various options for describing the skeletal changes caused by metastases before, during, and after treatments. At present, in clinical practice, the only laboratory test currently used to measure metastatic bone progression remains prostate-specific antigen (PSA). Great importance has been progressively assumed by new modalities of metabolic imaging, such as 18F fluoride, 18F/11C choline, and 18F FDG positron emission tomography (PET)/computed tomography (CT) that are flanking the traditional bone scan (BS) with 99mTc phosphonates, both with planar acquisition and single-photon emission computed tomography (SPECT). In addition, radiology, besides CT, is proposing the high performance of multimodality magnetic resonance imaging (MRI) that seems to guarantee a very high accuracy in evaluating skeletal involvement.

Keywords

  • Bone Metastasis
  • Bone Scan
  • Abiraterone Acetate
  • Bone Scan Index
  • Conventional Radiology

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42327-2_18
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 18.1
Fig. 18.2
Fig. 18.3
Fig. 18.4
Fig. 18.5
Fig. 18.6
Fig. 18.7
Fig. 18.8
Fig. 18.9

References

  1. Kirby M, Hirst C, Crawford ED (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract 65:1180–1192

    CAS  CrossRef  PubMed  Google Scholar 

  2. Portenoy RK, Koh M (2010) Cancer pain syndromes. In: Bruera E, Portenoy RK (eds), Cancer pain. Assessment and management, vol 4. Cambridge University Press pp 53–88

    Google Scholar 

  3. Van Herk R, van Dijk M, Baar FPM et al (2007) Observational scales for pain assessment in older adults with cognitive impairments or communication difficulties. Nurs Res 56:34–43

    CrossRef  PubMed  Google Scholar 

  4. Parker C, Nilsson S, Heinrich D et al (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–223

    CAS  CrossRef  PubMed  Google Scholar 

  5. Sartor O, Coleman R, Nilsson S et al (2014) Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 15:738–746

    CAS  CrossRef  PubMed  Google Scholar 

  6. James ND, Pirrie S, Brown JE et al (2013) Clinical outcomes in patients with castraterefractory prostate cancer (CRPC) metastatic to bone randomized in the factorial TRAPEZE trial to docetaxel (D) with strontium-89 (Sr89), zoledronic acid (ZA), neither, or both (ISRCTN 12808747). J Clin Oncol 31:abstr LBA5000

    Google Scholar 

  7. Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    Google Scholar 

  8. Fohr B, Dunstan CR, Seibel MJ (2003) Clinical review 165: markers of bone remodeling in metastatic bone disease. J Clin Endocrinol Metab 88:5059–5075

    Google Scholar 

  9. Tamada T, Sone T, Tomomitsu T et al (2001) Biochemical markers for the detection of bone metastasis in patients with prostate cancer, diagnostic efficacy and the effects of hormonal therapy. J Bone Miner Metab 19:45–51

    CAS  CrossRef  PubMed  Google Scholar 

  10. Jung K, Lein M (2002) Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis. J Clin Oncol 20:850–856

    CrossRef  Google Scholar 

  11. Koizumi M, Yonese J, Fukui I, Ogata E (2001) The serum level of the amino-terminal propeptide of type I procollagen is a sensitive marker for prostate cancer metastasis to bone. BJU Int 87:348–351

    CAS  CrossRef  PubMed  Google Scholar 

  12. Zafeirakis AG, Papatheodorou GA, Limouris GS (2010) Clinical and imaging correlations of bone turnover markers in prostate cancer patients with bone only metastases. Nucl Med Commun 31:249–253

    CrossRef  PubMed  Google Scholar 

  13. Koopmans N, de Jong IJ, Breeuwsma AJ, van der Veer E (2007) Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer: a longitudinal approach. J Urol 178(3 Pt 1):849–853

    Google Scholar 

  14. Zafeirakis AG, Papatheodorou GA, Arhontakis A et al (2010) Predictive implications of bone turnover markers after palliative treatment with (186)Re-HEPD in hormone-refractory prostate cancer with painful osseous metastases. Nucl Med Commun 31:249–253

    CrossRef  PubMed  Google Scholar 

  15. Cook RJ, Coleman R, Brown J, Lipton A, Major P, Hei YJ, Saad F, Smith MR (2006) Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res 12(1):3361–7.99–100

    Google Scholar 

  16. Smith MR, Cook RJ, Coleman R, Brown J, Lipton A, Major P, Hei YJ, Saad F (2007) Predictors of skeletal complications in men with hormone-refractory metastatic prostate cancer. Urology 70(2):315–319

    CrossRef  PubMed  Google Scholar 

  17. Coleman RE, Major P, Lipton A, Brown JE, Lee KA, Smith M, Saad F, Zheng M, Hei YJ, Seaman J, Cook R (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. Clin Oncol 23(22):4925–4935

    CAS  CrossRef  Google Scholar 

  18. Smith MR, Cook RJ, Coleman R, Brown J, Lipton A, Major P, Hei YJ, Saad F (2007) Predictors of skeletal complications in men with hormone-refractory metastatic prostate cancer. Urology 70(2):315–319)

    Google Scholar 

  19. Som A, Tu SM, Liu J, Wang X, Qiao W, Logothetis C, Corn PG (2012) Response in bone turnover markers during therapy predicts overall survival in patients with metastatic prostate cancer: analysis of three clinical trials. Cancer 107(9):1547–1553

    CAS  CrossRef  Google Scholar 

  20. Metwalli AR, Rosner IL, Cullen J, Chen Y, Brand T, Brassell SA, Lesperance J, Porter C, Sterbis J, McLeod DG (2014) Elevated alkaline phosphatase velocity strongly predicts overall survival and the risk of bone metastases in castrate-resistant prostate cancer. Urol Oncol 32(6):761–768

    Google Scholar 

  21. Brasso K, Christensen IJ, Johansen JS, Teisner B, Garnero P, Price PA, Iversen P (2006) Prognostic value of PINP, bone alkaline phosphatase, CTX-I, and YKL-40 in patients with metastatic prostate carcinoma. Prostate 66(5):503–513

    CAS  CrossRef  PubMed  Google Scholar 

  22. Payne H, Cornford P (2011) Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol 29:593–601

    CrossRef  PubMed  Google Scholar 

  23. Hillner BE, Siegel BA, Hanna L, Duan F, Quinn B, Shields AF (2015) 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the National Oncologic PET Registry. J Nucl Med 56:222–228

    Google Scholar 

  24. Thuret R, Massard C, Gross-Goupil M, Escudier B, Di Palma M, Bossi A, de Crevoisier R, Chauchereau A, Fizazi K (2008) The postchemotherapy PSA surge syndrome. Ann Oncol 19:1308–1311

    CAS  CrossRef  PubMed  Google Scholar 

  25. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA et al (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26:1148–1159

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Galasko CS (1995) Diagnosis of skeletal metastases and assessment of response to treatment. Clin Orthop Relat Res 312:64–75

    Google Scholar 

  27. Costelloe CM, Chuang HH, Madewell JE, Ueno NT (2010) Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer Educ 1:80–92

    CrossRef  Google Scholar 

  28. Bauerle T, Semmler W (2009) Imaging response to systemic therapy for bone metastases. Eur Radiol 19:2495–2507

    CrossRef  PubMed  Google Scholar 

  29. Messiou C, Cook G, Reid AH et al (2011) The CT flare response of metastatic bone disease in prostate cancer. Acta Radiol 52:557–561

    CrossRef  PubMed  Google Scholar 

  30. Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, Part 2. Skeletal Radiol 36:1017–1027

    CrossRef  PubMed  Google Scholar 

  31. Lecouvet FE, Larbi A, Pasoglou V et al (2013) MRI for response assessment in metastatic bone disease. Eur Radiol 23:1986–1997

    CAS  CrossRef  PubMed  Google Scholar 

  32. Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T et al (2015) Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology 275:155–166

    CrossRef  PubMed  Google Scholar 

  33. Koh DM, Takahara T, Imai Y, Collins DJ (2007) Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 6:211–224

    CrossRef  PubMed  Google Scholar 

  34. Lecouvet FE, Geukens D, Stainier A, Jamar F, Jamart J, d’Othee BJ et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25:3281–3287

    CrossRef  PubMed  Google Scholar 

  35. Ketelsen D, Rothke M, Aschoff P, Merseburger AS, Lichy MP, Reimold M et al (2008) Detection of bone metastasis of prostate cancer – comparison of whole-body MRI and bone scintigraphy. Rofo 180:746–752

    CAS  CrossRef  PubMed  Google Scholar 

  36. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75

    CrossRef  PubMed  Google Scholar 

  37. Luboldt W, Kufer R, Blumstein N, Toussaint TL, Kluge A, Seemann MD et al (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249:1017–1025

    CrossRef  PubMed  Google Scholar 

  38. Venkitaraman R, Cook GJ, Dearnaley DP, Parker CC, Khoo V, Eeles R et al (2009) Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol 53:241–247

    CAS  CrossRef  PubMed  Google Scholar 

  39. Wang X, Zhang C, Jiang X (2009) Prospective study of bone metastasis from prostate cancer: comparison between large field diffusion-weighted imaging and bone scintigraphy. Chinese J Radiol 43:131–135

    Google Scholar 

  40. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P et al (2010) Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 39:333–343

    CrossRef  PubMed  Google Scholar 

  41. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sorensen J, Ahlstrom H (2012) Whole-body diffusion-weighted MRI compared with (18)F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol 199:1114–1120

    CrossRef  PubMed  Google Scholar 

  42. Stecco A, Lombardi M, Leva L, Brambilla M, Negru E, Delli Passeri S et al (2013) Diagnostic accuracy and agreement between whole-body diffusion MRI and bone scintigraphy in detecting bone metastases. Radiol Med 118:465–475

    CAS  CrossRef  PubMed  Google Scholar 

  43. Fitzpatrick JM, Bellmunt J, Fizazi K, Heidenreich A, Sternberg CN, Tombal B et al (2014) Optimal management of metastatic castration-resistant prostate cancer: highlights from a European Expert Consensus Panel. Eur J Cancer 50:1617–1627

    CrossRef  PubMed  Google Scholar 

  44. Reischauer C, Froehlich JM, Koh DM et al (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps-initial observations. Radiology 257:523–531

    CrossRef  PubMed  Google Scholar 

  45. Messiou C, Collins DJ, Giles S et al (2011) Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol 21:2169–2177

    CAS  CrossRef  PubMed  Google Scholar 

  46. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20

    CAS  CrossRef  PubMed  Google Scholar 

  47. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  48. Bombardieri E, Bombardieri E, Setti L, Kirienko M, Antunovic L, Guglielmo P et al (2015) Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion. The Quarterly J Nucl Med Mol Imaging 4:381–399

    Google Scholar 

  49. Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A et al (2010) When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol 57:551–558

    CrossRef  PubMed  Google Scholar 

  50. Hillner BE, Siegel BA, Hanna L et al (2015) 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the National Oncologic PET Registry. J Nucl Med 56:222–228

    CAS  CrossRef  PubMed  Google Scholar 

  51. Dennis ER, Jia X, Mezheritskiy IS, Stephenson RD, Schoder H, Fox JJ et al (2012) Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol 30:519–524

    CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H et al (2012) A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol 62:78–84

    CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Gamez-Cenzano C, Pino-Sorroche F (2014) Standardization and quantification in FDG-PET/CT imaging for staging and restaging of malignant disease. PET Clin 9:117–127

    CrossRef  PubMed  Google Scholar 

  54. Garcia JR, Moreno C, Valls E, Cozar P, Bassa P, Soler M, Alvarez-Moro FJ, Moragas M, Riera E (2015) Diagnostic performance of bone scintigraphy and (11)C-Choline PET/CT in the detection of bone metastases in patients with biochemical recurrence of prostate cancer. Rev Esp Med Nucl Imagen Mol 34:155–161

    CAS  PubMed  Google Scholar 

  55. Poulsen MH, Petersen H, Høilund-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, Steffansen SI, Walter S (2014) Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography(PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int 114:818–823

    CAS  CrossRef  PubMed  Google Scholar 

  56. Iagaru A, Mittra E, Dick DW, Gambhir SS (2012) Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 14:252–259

    CrossRef  PubMed  Google Scholar 

  57. Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A, Lata S (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31:262–269

    CrossRef  PubMed  Google Scholar 

  58. Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Türler A, Vorreuther R, Göhring U, Schild HH, Gerhardt T, Pöge U, Ezziddin S, Biersack HJ, Ahmadzadehfar H (2014) Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging 41:59–67

    CAS  CrossRef  PubMed  Google Scholar 

  59. Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F, Mievis F, Aerts J, Waltregny D, Jerusalem G, Hustinx R (2011) 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun 32:168–176

    CrossRef  PubMed  Google Scholar 

  60. Takesh M, Odat Allh K, Adams S, Zechmann C (2012) Diagnostic role of (18)F-FECH-PET/CT compared with bone scan in evaluating the prostate cancer patients referring with biochemical recurrence. ISRN Oncol 2012:815234

    PubMed  PubMed Central  Google Scholar 

  61. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J, Loidl W, Pirich C, Fogelman I, Langsteger W (2010) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 12:98–107

    CrossRef  PubMed  Google Scholar 

  62. Langsteger W, Balogova S, Huchet V, Beheshti M, Paycha F, Egrot C, Janetschek G, Loidl W, Nataf V, Kerrou K, Pascal O, Cussenot O, Talbot JN (2011) Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 55:448–457

    CAS  PubMed  Google Scholar 

  63. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J, Loidl W, Pirich C, Fogelman I, Langsteger W (2009) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 11:446–454

    Google Scholar 

  64. McCarthy M, Siew T, Campbell A, Lenzo N, Spry N, Vivian J, Morandeau L (2011) 18F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging 38:14–22

    CrossRef  PubMed  Google Scholar 

  65. Fuccio C, Castellucci P, Schiavina R, Santi I, Allegri V, Pettinato V, Boschi S, Martorana G, Al-Nahhas A, Rubello D, Fanti S (2010) Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 24:485–492

    CAS  CrossRef  PubMed  Google Scholar 

  66. Picchio M, Spinapolice EG, Fallanca F, Crivellaro C, Giovacchini G, Gianolli L, Messa C (2012) [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging 39:13–26

    CAS  CrossRef  PubMed  Google Scholar 

  67. Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GR, Reza DK, Ramin S (2013) Application of C-11-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int 112:1062–1072

    CAS  CrossRef  PubMed  Google Scholar 

  68. Caffo O, Maines F, Donner D, Veccia A, Chierichetti F, Galligioni E (2014) Impact of enzalutamide administration on primary prostate cancer volume: a metabolic evaluation by choline positron emission tomography in castration-resistant prostate cancer patients. Clin Genitourin Cancer 12:312–316

    CrossRef  PubMed  Google Scholar 

  69. De Giorgi U, Caroli P, Scarpi E, Conteduca V, Burgio SL, Menna C et al (2015) (18)F-Fluorocholine PET/CT for early response assessment in patients with metastatic castration-resistant prostate cancer treated with enzalutamide. Eur J Nucl Med Mol Imaging 2015;42:1276–1283

    Google Scholar 

  70. De Giorgi U, Caroli P, Burgio SL, Menna C, Conteduca V, Bianchi E et al (2014) Early outcome prediction on 18F-fluorocholine PET/CT in metastatic castration-resistant prostate cancer patients treated with abiraterone. Oncotarget 5:12448–12458

    CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Ceci F, Castellucci P, Graziani T, Schiavina R, Renzi R, Borghesi M et al (2015) C-Choline PET/CT in castration-resistant prostate cancer patients treated with docetaxel. Eur J Nucl Med Mol Imaging

    Google Scholar 

  72. Messiou C, Cook G, deSouza MN (2009) Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer 101:1225–1232

    Google Scholar 

  73. Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR 186:1783–1786

    CrossRef  PubMed  Google Scholar 

  74. Levenson RM, Sauerbrunn BJ, Bates HR, Newman RD, Eddy JL, Ihde DC (1983) Comparative value of bone scintigraphy and radiography in monitoring tumour response in systemically treated prostatic carcinoma. Radiology 146:513–518

    CAS  CrossRef  PubMed  Google Scholar 

  75. Pollen JJ, Witztum KF, Ashburn WL (1984) The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. Am J Roentgenol 142:773–776

    CAS  CrossRef  Google Scholar 

  76. Mitsui Y, Shiina H, Yamamoto Y, Haramoto M, Arichi N, Yasumoto H, Kitagaki H, Igawa M (2012) Prediction of survival benefit using an automated bone scan index in patients with castration-resistant prostate cancer. BJU Int 110:E628–E6234

    Google Scholar 

  77. Shimizu N, Masud H, Yamanaka H, Oriuchi N, Inoue T, Endo K (1999) Fluorodeoxyglucose positron emission tomography scan of prostate cancer bone metastases with flare reaction after endocrine therapy. J Urol 161:608–609

    CAS  CrossRef  PubMed  Google Scholar 

  78. Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52:81–89

    CrossRef  PubMed  Google Scholar 

  79. Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol 186:1783–1786

    CrossRef  PubMed  Google Scholar 

  80. McNamara MA, George DJ (2015) Pain, PSA flare, and bone scan response in a patient with metastatic castration-resistant prostate cancer treated with radium-223, a case report. BMC Cancer 15:371

    CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Jadvar M, Desai B, Si L, Groshen S, Mills J, Murray R et al (2015) Prediction of hormonal resistance in metastatic prostate cancer with FDG PET/CT. J Nucl Med 56:1451

    Google Scholar 

  82. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Chen B; Zoledronic Acid Prostate Cancer Study Group (2002) A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 94:1458–1468

    Google Scholar 

  83. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, Rosenthal MA (2004) Eisenberger MA; TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512

    CAS  CrossRef  PubMed  Google Scholar 

  84. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, Benson MC, Small EJ, Raghavan D, Crawford ED (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    CAS  CrossRef  PubMed  Google Scholar 

  85. Sternberg CN, Petrylak DP, Sartor O, Witjes JA, Demkow T, Ferrero JM, Eymard JC, Falcon S, Calabrò F, James N, Bodrogi I, Harper P, Wirth M, Berry W, Petrone ME, McKearn TJ, Noursalehi M, George M, Rozencweig M (2009) Multinational, double-blind, phase III study of prednisone and either satraplatin or placebo in patients with castrate-refractory prostate cancer progressing after prior chemotherapy: the SPARC trial. J Clin Oncol 27:5431–5438

    CAS  CrossRef  PubMed  Google Scholar 

  86. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Frohlich MW, Schellhammer PF (2010) IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    CAS  CrossRef  PubMed  Google Scholar 

  87. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, Roessner M, Gupta S, Sartor AO (2010) TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154

    CrossRef  CAS  PubMed  Google Scholar 

  88. Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377:813–822

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  89. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, Staffurth JN, North S, Vogelzang NJ, Saad F, Mainwaring P, Harland S, Goodman OB Jr, Sternberg CN, Li JH, Kheoh T, Haqq CM, de Bono JS; COU-AA-301 Investigators (2012) Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 13:983–992

    Google Scholar 

  90. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ, Flaig TW, Fléchon A, Mainwaring P, Fleming M, Hainsworth JD, Hirmand M, Selby B, Seely L, de Bono JS (2012) AFFIRM Investigators. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197

    CAS  CrossRef  PubMed  Google Scholar 

  91. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S, Carles J, Mulders PF, Basch E, Small EJ, Saad F, Schrijvers D, Van Poppel H, Mukherjee SD, Suttmann H, Gerritsen WR, Flaig TW, George DJ, Yu EY, Efstathiou E, Pantuck A, Winquist E, Higano CS, Taplin ME, Park Y, Kheoh T, Griffin T, Scher HI, Rathkopf DE; COU-AA-302 Investigators (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368:138–148. Erratum in N Engl J Med 368:584

    Google Scholar 

  92. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, Iversen P, Bhattacharya S, Carles J, Chowdhury S, Davis ID, de Bono JS, Evans CP, Fizazi K, Joshua AM, Kim CS, Kimura G, Mainwaring P, Mansbach H, Miller K, Noonberg SB, Perabo F, Phung D, Saad F, Scher HI, Taplin ME, Venner PM, Tombal B; PREVAIL Investigators (2014) Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371:424–433

    Google Scholar 

  93. Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, Wong YN, Hahn N, Kohli M, Cooney MM, Dreicer R, Vogelzang NJ, Picus J, Shevrin D, Hussain M, Garcia JA, DiPaola RS (2015) Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 373:737–746

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  94. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, Ritchie AW, Parker CC, Russell JM, Attard G, de Bono J, Cross W, Jones RJ, Thalmann G, Amos C, Matheson D, Millman R, Alzouebi M, Beesley S, Birtle AJ, Brock S, Cathomas R, Chakraborti P, Chowdhury S, Cook A, Elliott T, Gale J, Gibbs S, Graham JD, Hetherington J, Hughes R, Laing R, McKinna F, McLaren DB, O’Sullivan JM, Parikh O, Peedell C, Protheroe A, Robinson AJ, Srihari N, Srinivasan R, Staffurth J, Sundar S, Tolan S, Tsang D, Wagstaff J, Parmar MK; STAMPEDE investigators (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387:1163–1177

    Google Scholar 

  95. http://uroweb.org/guideline/prostate-cancer/

  96. Parker C, Gillessen S, Heidenreich A, Horwich A; ESMO Guidelines Committee (2015) Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(Suppl 5):v69–77

    Google Scholar 

  97. https://www.auanet.org/common/pdf/education/clinical-guidance/Prostate-Cancer.pdf

  98. http://www.nccn.org/professionals/physiciangls/pdf/prostate.pdf

  99. Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, Halabi S, Nelson PS, Sartor O, Smith MR, Soule HR, Akaza H, Beer TM, Beltran H, Chinnaiyan AM, Daugaard G, Davis ID, De Santis M, Drake CG, Eeles RA, Fanti S, Gleave ME, Heidenreich A, Hussain M, James ND, Lecouvet FE, Logothetis CJ, Mastris K, Nilsson S, Oh WK, Olmos D, Padhani AR, Parker C, Rubin MA, Schalken JA, Scher HI, Sella A, Shore ND, Small EJ, Sternberg CN, Suzuki H, Sweeney CJ, Tannock IF, Tombal B (2015) Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 26:1589–1604

    Google Scholar 

  100. Evangelista L, Bertoldo F, Boccardo F, Conti G, Menchi I, Mungai F et al (2016) Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging 2016;43(8):1546–62

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. Annaluisa De Simone Sorrentino for her collaboration in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Bombardieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bombardieri, E. et al. (2017). Approaches for Assessment of Response of Bone Metastases to Therapies. In: Bertoldo, F., Boccardo, F., Bombardieri, E., Evangelista, L., Valdagni, R. (eds) Bone Metastases from Prostate Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-42327-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42327-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42326-5

  • Online ISBN: 978-3-319-42327-2

  • eBook Packages: MedicineMedicine (R0)