Skip to main content

Bone Metastases from Prostate Cancer: Hormonal Therapy

  • 1315 Accesses

Abstract

The majority of patients diagnosed with prostate cancer develop bone metastases. If untreated, patients affected by bone metastases experience skeletal events, like bone fractures or spinal cord compression, which complicate the course of disease and can further shorten their life expectancy; furthermore, these events are usually associated with pain and other troublesome symptoms, which can seriously affect patients’ quality of life and become a cause of temporary or permanent disability. For these reasons, the treatment of bone metastases represents a main issue in the management of advanced prostate cancer.

Hormonal therapy is the mainstay of treatment for prostate cancer and, namely, the most effective therapeutic approach in patients with bone metastases. Actually, several hormonal compounds are available in the management of advanced prostate cancer: inhibitors of gonadal androgen synthesis, inhibitors of adrenal androgen synthesis, and first and second generation of antiandrogens. These agents exert a good control of the disease in terms of both overall survival and reduction in the incidence and severity of skeletal adverse events. In hormone-naïve patients, luteinizing hormone-releasing hormone (LH-RH) agonists or antagonists can be used sequentially or in combination with first-generation antiandrogens; in castration-resistant prostate cancer (CRPC), a major role is played by new-generation antiandrogens and CYP17 inhibitors, and sequencing these novel drugs with chemotherapy is still an open issue. This chapter analyzes the hormonal therapies approved for the treatment of prostate cancer, focusing on the relative mechanism of action, safety, and therapeutic activity of each agent. The results achieved by hormonal therapies in large comparative trials and meta-analysis are reviewed, and the various options both in hormone-naïve and in CRPC patients are presented and critically discussed. A brief insight into the pharmacodynamics of drugs and molecular aspects of the disease is provided to support the rationale for a more “intelligent” use of these treatments or their combination or the development of novel therapeutic approaches.

Keywords

  • Overall Survival
  • Androgen Receptor
  • Bone Metastasis
  • Androgen Deprivation Therapy
  • Cyproterone Acetate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42327-2_10
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42327-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2

References

  1. Kirby M, Hirst C, Crawford ED (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pract 65(11):1180–92

    CAS  CrossRef  PubMed  Google Scholar 

  2. Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32(49):5501–11

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Mitsiades N (2013) A road map to comprehensive androgen receptor axis targeting for castration-resistant prostate cancer. Cancer Res 73(15):4599–605

    CAS  CrossRef  PubMed  Google Scholar 

  4. Smith MR et al (2005) Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol 23(13):2918–25

    CrossRef  PubMed  Google Scholar 

  5. Saad F et al (2004) Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96(11):879–82

    CAS  CrossRef  PubMed  Google Scholar 

  6. Fizazi K et al (2015) Bone-related parameters are the main prognostic factors for overall survival in Men with bone metastases from castration-resistant prostate cancer. Eur Urol 68(1):42–50

    CrossRef  PubMed  Google Scholar 

  7. Vargas HA et al (2014) Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 271(1):220–9

    CrossRef  PubMed  Google Scholar 

  8. Hornberg E et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6(4), e19059

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Antonarakis ES et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–38

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Jernberg E et al (2013) Characterization of prostate cancer bone metastases according to expression levels of steroidogenic enzymes and androgen receptor splice variants. PLoS One 8(11), e77407

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Ren G, Esposito M, Kang Y (2015) Bone metastasis and the metastatic niche. J Mol Med (Berl) 93(11):1203–12

    CAS  CrossRef  Google Scholar 

  12. Nuzzo PV et al (2014) Periostin: a novel prognostic and therapeutic target for genitourinary cancer? Clin Genitourin Cancer 12(5):301–11

    CrossRef  PubMed  Google Scholar 

  13. Nuzzo PV et al (2012) Prognostic value of stromal and epithelial periostin expression in human prostate cancer: correlation with clinical pathological features and the risk of biochemical relapse or death. BMC Cancer 12:625

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Baniwal SK et al (2009) Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Mol Endocrinol 23(8):1203–14

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Liu XH et al (2007) Androgen-induced Wnt signaling in preosteoblasts promotes the growth of MDA-PCa-2b human prostate cancer cells. Cancer Res 67(12):5747–53

    CAS  CrossRef  PubMed  Google Scholar 

  16. Yang W, Levine AC (2011) Androgens and prostate cancer bone metastases: effects on both the seed and the soil. Endocrinol Metab Clin North Am 40(3):643–53, x

    CAS  CrossRef  PubMed  Google Scholar 

  17. Berman DM, Rodriguez R, Veltri RW (2012) Development, molecular biology and physiology of the prostate. In: Wein AJ et al (eds) Campbell-Walsh urology. 10th edn. Elsevier, Philadelphia, pp 2533–2569

    Google Scholar 

  18. Seidenfeld J et al (2000) Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med 132(7):566–77

    CAS  CrossRef  PubMed  Google Scholar 

  19. Lepor H, Shore ND (2012) LHRH agonists for the treatment of prostate cancer: 2012. Rev Urol 14(1–2):1–12

    PubMed  PubMed Central  Google Scholar 

  20. Lam JS et al (2006) Secondary hormonal therapy for advanced prostate cancer. J Urol 175(1):27–34

    CAS  CrossRef  PubMed  Google Scholar 

  21. Lincoln D (1997) Gonadotropin-releasing hormone (GnRH): basic physiology. In: DeGroot LJ et al. (eds) Endrocrinology. W.B. Saunders, Co., Philadelphia, pp 142–151

    Google Scholar 

  22. Cook T, Sheridan WP (2000) Development of GnRH antagonists for prostate cancer: new approaches to treatment. Oncologist 5(2):162–8

    CAS  CrossRef  PubMed  Google Scholar 

  23. Crawford ED et al (2011) A phase III extension trial with a 1-arm crossover from leuprolide to degarelix: comparison of gonadotropin-releasing hormone agonist and antagonist effect on prostate cancer. J Urol 186(3):889–97

    CAS  CrossRef  PubMed  Google Scholar 

  24. Bubley GJ (2001) Is the flare phenomenon clinically significant? Urology 58(2 Suppl 1):5–9

    CAS  CrossRef  PubMed  Google Scholar 

  25. Heidenreich A et al (2014) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 65(2):467–79

    CAS  CrossRef  PubMed  Google Scholar 

  26. Labrie F et al (1987) Flutamide eliminates the risk of disease flare in prostatic cancer patients treated with a luteinizing hormone-releasing hormone agonist. J Urol 138(4):804–6

    CAS  PubMed  Google Scholar 

  27. Trachtenberg J et al (2002) A phase 3, multicenter, open label, randomized study of abarelix versus leuprolide plus daily antiandrogen in men with prostate cancer. J Urol 167(4):1670–4

    CAS  CrossRef  PubMed  Google Scholar 

  28. McLeod D et al (2001) A phase 3, multicenter, open-label, randomized study of abarelix versus leuprolide acetate in men with prostate cancer. Urology 58(5):756–61

    CAS  CrossRef  PubMed  Google Scholar 

  29. Klotz L et al (2008) The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int 102(11):1531–8

    CAS  CrossRef  PubMed  Google Scholar 

  30. O’Farrell S et al (2015) Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J Clin Oncol 33(11):1243–51

    CrossRef  PubMed  Google Scholar 

  31. Nguyen PL et al (2011) Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. Jama 306(21):2359–66

    CAS  CrossRef  PubMed  Google Scholar 

  32. Moinpour CM et al (1998) Quality of life in advanced prostate cancer: results of a randomized therapeutic trial. J Natl Cancer Inst 90(20):1537–44

    CAS  CrossRef  PubMed  Google Scholar 

  33. Gardiner RA et al (2015) Patients who receive androgen deprivation therapy risk adverse cognitive changes. J Clin Oncol 33(36):4314–5

    CrossRef  PubMed  Google Scholar 

  34. Gonzalez BD et al (2015) Course and predictors of cognitive function in patients with prostate cancer receiving androgen-deprivation therapy: a controlled comparison. J Clin Oncol 33(18):2021–7

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Klotz L et al (2014) Disease control outcomes from analysis of pooled individual patient data from five comparative randomised clinical trials of degarelix versus luteinising hormone-releasing hormone agonists. Eur Urol 66(6):1101–8

    CAS  CrossRef  PubMed  Google Scholar 

  36. Chen HF et al (1999) Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro. J Clin Endocrinol Metab 84(2):743–50

    CAS  PubMed  Google Scholar 

  37. Tanriverdi F et al (2005) GnRH-I and GnRH-II have differential modulatory effects on human peripheral blood mononuclear cell proliferation and interleukin-2 receptor gamma-chain mRNA expression in healthy males. Clin Exp Immunol 142(1):103–10

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Shore N et al (2015) TAK-385, an oral GnRH antagonist: efficacy and safety results from a randomized phase 2 trial in prostate cancer patients (pts). Eur J Cancer 51 Supp. 3:S474

    Google Scholar 

  39. Small EJ et al (2004) Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 22(6):1025–33

    CAS  CrossRef  PubMed  Google Scholar 

  40. Attard G, Belldegrun AS, de Bono JS (2005) Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU Int 96(9):1241–6

    CrossRef  PubMed  Google Scholar 

  41. Rehman Y, Rosenberg JE (2012) Abiraterone acetate: oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Des Devel Ther 6:13–8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Ryan CJ et al (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368(2):138–48

    CAS  CrossRef  PubMed  Google Scholar 

  43. Attard G et al (2012) Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J Clin Endocrinol Metab 97(2):507–16

    CAS  CrossRef  PubMed  Google Scholar 

  44. Attard G et al (2009) Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol 27(23):3742–8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. O’Donnell A et al (2004) Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer 90(12):2317–25

    PubMed  PubMed Central  Google Scholar 

  46. Li Z et al (2015) Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 523(7560):347–51

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Lorente D et al (2014) Tumour responses following a steroid switch from prednisone to dexamethasone in castration-resistant prostate cancer patients progressing on abiraterone. Br J Cancer 111(12):2248–53

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Romero-Laorden N et al (2016) Prospective evaluation of the response to prednisone-dexamethasone switch in castration-resistant prostate cancer patients treated with abiraterone pre- and post-docetaxel. J Clin Oncol 34(Suppl 2S; abstr 327)

    Google Scholar 

  49. Petrylak DP et al (2015) Phase 1/2 study of orteronel (TAK-700), an investigational 17,20-lyase inhibitor, with docetaxel-prednisone in metastatic castration-resistant prostate cancer. Invest New Drugs 33(2):397–408

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Saad F et al (2015) Orteronel plus prednisone in patients with chemotherapy-naive metastatic castration-resistant prostate cancer (ELM-PC 4): a double-blind, multicentre, phase 3, randomised, placebo-controlled trial. Lancet Oncol 16(3):338–48

    CAS  CrossRef  PubMed  Google Scholar 

  51. Fizazi K et al (2015) Phase III, randomized, double-blind, multicenter trial comparing orteronel (TAK-700) plus prednisone with placebo plus prednisone in patients with metastatic castration-resistant prostate cancer that has progressed during or after docetaxel-based therapy: ELM-PC 5. J Clin Oncol 33(7):723–31

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Gillatt D (2006) Antiandrogen treatments in locally advanced prostate cancer: are they all the same? J Cancer Res Clin Oncol 132(Suppl 1):S17–26

    CAS  CrossRef  PubMed  Google Scholar 

  53. Helsen C et al (2012) Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol 348(2):411–7

    CAS  CrossRef  PubMed  Google Scholar 

  54. Gioeli DG (2010) The promise of novel androgen receptor antagonists. Cell Cycle 9(3):440–1

    CAS  CrossRef  PubMed  Google Scholar 

  55. Isurugi K et al (1980) Endocrine effects of cyproterone acetate in patients with prostatic cancer. J Urol 123(2):180–3

    CAS  PubMed  Google Scholar 

  56. Anderson J (2003) The role of antiandrogen monotherapy in the treatment of prostate cancer. BJU Int 91(5):455–61

    CAS  CrossRef  PubMed  Google Scholar 

  57. Migliari R et al (1999) Antiandrogens: a summary review of pharmacodynamic properties and tolerability in prostate cancer therapy. Arch Ital Urol Androl 71(5):293–302

    CAS  PubMed  Google Scholar 

  58. Ricci F et al (2014) Safety of antiandrogen therapy for treating prostate cancer. Expert Opin Drug Saf 13(11):1483–99

    CAS  CrossRef  PubMed  Google Scholar 

  59. Iversen P et al (2000) Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol 164(5):1579–82

    CAS  CrossRef  PubMed  Google Scholar 

  60. Boccardo F et al (1999) Bicalutamide monotherapy versus flutamide plus goserelin in prostate cancer patients: results of an Italian Prostate Cancer Project study. J Clin Oncol 17(7):2027–38

    CAS  PubMed  Google Scholar 

  61. Sieber PR et al (2004) Bicalutamide 150 mg maintains bone mineral density during monotherapy for localized or locally advanced prostate cancer. J Urol 171(6 Pt 1):2272–6, quiz 2435

    CAS  CrossRef  PubMed  Google Scholar 

  62. McLeod D, Fourcade RO (2004) Tolerability of Nonsteroidal Antiandrogens in the treatment of Advanced Prostate Cancer. McLeod DG Oncologist 1997;2(1):18–27

    Google Scholar 

  63. Boccardo F et al (2005) Evaluation of tamoxifen and anastrozole in the prevention of gynecomastia and breast pain induced by bicalutamide monotherapy of prostate cancer. J Clin Oncol 23(4):808–15

    CAS  CrossRef  PubMed  Google Scholar 

  64. Famularo G et al (2003) Flutamide-associated acute liver failure. Ann Ital Med Int 18(4):250–3

    PubMed  Google Scholar 

  65. Dole EJ, Holdsworth MT (1997) Nilutamide: an antiandrogen for the treatment of prostate cancer. Ann Pharmacother 31(1):65–75

    CAS  PubMed  Google Scholar 

  66. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group (2000) Lancet 355(9214):1491–1498

    Google Scholar 

  67. Kelly WK, Scher HI (1993) Prostate specific antigen decline after antiandrogen withdrawal: the flutamide withdrawal syndrome. J Urol 149(3):607–9

    CAS  PubMed  Google Scholar 

  68. Bambury RM, Scher HI (2015) Enzalutamide: development from bench to bedside. Urol Oncol 33(6):280–8

    CAS  CrossRef  PubMed  Google Scholar 

  69. Tran C et al (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324(5928):787–90

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  70. Shore ND et al (2016) Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol 17(2):153–63

    CAS  CrossRef  PubMed  Google Scholar 

  71. Penson DF et al (2016) Enzalutamide versus Bicalutamide in Castration-Resistant Prostate Cancer: The STRIVE Trial. J Clin Oncol August 20, 2016, 34(24).

    Google Scholar 

  72. Scher HI et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367(13):1187–97

    CAS  CrossRef  PubMed  Google Scholar 

  73. Clegg NJ et al (2012) ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res 72(6):1494–503

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Raymond Smith M et al (2013) ARN-509 in men with high-risk nonmetastatic castration-resistant prostate cancer (CRPC). J Clin Oncol 31(Suppl 6; abstr 7)

    Google Scholar 

  75. Saad F et al (2015) The 2015 CUA-CUOG Guidelines for the management of castration-resistant prostate cancer (CRPC). Can Urol Assoc J 9(3–4):90–6

    CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Montgomery RB et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68(11):4447–54

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Mostaghel EA et al (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67(10):5033–41

    CAS  CrossRef  PubMed  Google Scholar 

  78. Tyrrell CJ et al (1993) Multicenter randomized trial comparing Zoladex with Zoladex plus flutamide in the treatment of advanced prostate cancer. Survival update. International Prostate Cancer Study Group. Cancer 72(12 Suppl):3878–9

    CAS  CrossRef  PubMed  Google Scholar 

  79. Denis LJ et al (1998) Maximal androgen blockade: final analysis of EORTC phase III trial 30853. EORTC Genito-Urinary Tract Cancer Cooperative Group and the EORTC Data Center. Eur Urol 33(2):144–51

    CAS  CrossRef  PubMed  Google Scholar 

  80. Eisenberger MA et al (1998) Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 339(15):1036–42

    CAS  CrossRef  PubMed  Google Scholar 

  81. Boccardo F et al (1993) Goserelin acetate with or without flutamide in the treatment of patients with locally advanced or metastatic prostate cancer. The Italian Prostatic Cancer Project (PONCAP) Study Group. Eur J Cancer 29a(8):1088–93

    CAS  CrossRef  PubMed  Google Scholar 

  82. Janknegt RA et al (1993) Orchiectomy and nilutamide or placebo as treatment of metastatic prostatic cancer in a multinational double-blind randomized trial. J Urol 149(1):77–82; discussion 83

    CAS  PubMed  Google Scholar 

  83. Crawford ED et al (1989) A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 321(7):419–24

    CAS  CrossRef  PubMed  Google Scholar 

  84. Schmitt B et al (2000) Maximal androgen blockade for advanced prostate cancer. Cochrane Database Syst Rev (2):CD001526

    Google Scholar 

  85. Schmitt B et al (2001) Combined androgen blockade with nonsteroidal antiandrogens for advanced prostate cancer: a systematic review. Urology 57(4):727–32

    CAS  CrossRef  PubMed  Google Scholar 

  86. Moul JW (2009) Twenty years of controversy surrounding combined androgen blockade for advanced prostate cancer. Cancer 115(15):3376–8

    CrossRef  PubMed  Google Scholar 

  87. Samson DJ et al (2002) Systematic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer 95(2):361–76

    CAS  CrossRef  PubMed  Google Scholar 

  88. Efstathiou E et al (2014) Enzalutamide (ENZA) in combination with abiraterone acetate (AA) in bone metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol 32:5s(Suppl; abstr 5000)

    Google Scholar 

  89. NCT01949337 Clinical Trial.gov. Enzalutamide with or without abiraterone and prednisone in treating patients with castration-resistant metastatic prostate cancer

    Google Scholar 

  90. Smith MR et al (2014) Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol 32(11):1143–50

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  91. James ND et al (2016) Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. 387(10024):1163–77.

    Google Scholar 

  92. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council Trial. The Medical Research Council Prostate Cancer Working Party Investigators Group (1997) Br J Urol 79(2):235–246

    Google Scholar 

  93. Bolla M et al (2002) Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360(9327):103–6

    CAS  CrossRef  PubMed  Google Scholar 

  94. Bolla M et al (2009) Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med 360(24):2516–27

    CAS  CrossRef  PubMed  Google Scholar 

  95. Akakura K et al (1993) Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen. Cancer 71(9):2782–90

    CAS  CrossRef  PubMed  Google Scholar 

  96. Magnan S et al (2015) Intermittent vs continuous androgen deprivation therapy for prostate cancer: a systematic review and meta-analysis. JAMA Oncol 1(9):1261–9

    CrossRef  PubMed  Google Scholar 

  97. de Bono JS et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364(21):1995–2005

    CrossRef  PubMed  PubMed Central  Google Scholar 

  98. Morris MJ et al (2015) Radiographic progression-free survival as a response biomarker in metastatic castration-resistant prostate cancer: COU-AA-302 results. J Clin Oncol 33(12):1356–63

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  99. Ryan CJ et al (2015) Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 16(2):152–60

    CAS  CrossRef  PubMed  Google Scholar 

  100. Beer TM et al (2014) Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371(5):424–33

    CrossRef  PubMed  PubMed Central  Google Scholar 

  101. Maines F et al (2015) Sequencing new agents after docetaxel in patients with metastatic castration-resistant prostate cancer. Crit Rev Oncol Hematol 96(3):498–506

    CrossRef  PubMed  Google Scholar 

  102. Goh P et al (2007) New multidisciplinary prostate bone metastases clinic: first of its kind in Canada. Curr Oncol 14(1):9–12

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  103. Hoffman-Censits J, Kelly WK (2013) Enzalutamide: a novel antiandrogen for patients with castrate-resistant prostate cancer. Clin Cancer Res 19(6):1335–9

    CAS  CrossRef  PubMed  Google Scholar 

  104. Watson PA, Arora VK, Sawyers CL (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 15(12):701–11

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Boccardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zanardi, E., Cattrini, C., Boccardo, F. (2017). Bone Metastases from Prostate Cancer: Hormonal Therapy. In: Bertoldo, F., Boccardo, F., Bombardieri, E., Evangelista, L., Valdagni, R. (eds) Bone Metastases from Prostate Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-42327-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42327-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42326-5

  • Online ISBN: 978-3-319-42327-2

  • eBook Packages: MedicineMedicine (R0)