Skip to main content

Characterization of Ultrasound Tactile Display

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9774))

Abstract

Traditional haptic interfaces require physical contact between the haptic device and the user. An elegant and novel solution is to provide contactless tactile stimulation via airborne acoustic radiation pressure. However, the characteristics of contactless tactile displays are not well studied in the literature. In this paper, we study the characteristics of the ultrasonic tactile display as a haptic interface. In particular, we examine the effects of increasing the number of ultrasound transducers on four characteristics, namely the maximum producible force, the workspace, the workspace resolution, and the robustness of the simulation. Three rectangular-shaped 2D array configurations are considered: single-tile (10\(\,\times \,\)10 transducers), two-tiles (10\(\,\times \,\)20 transducers), and four-tiles (20\(\,\times \,\)20 transducers). Results show that the maximum producible force remains almost constant as the number of tiles increases, whereas the elevation at which these maxima are generated increases. The workspace increases along the xy-plane as the number of tiles increase almost linearly, however, the elevation of the workspace remains almost the same. Finally, we found that the robustness of tactile display decreases as the number of tiles increases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bickley, L., Szilagui, P.: Bates’ Guide to Physical Examination and History Taking, 9th edn. Lippincott Williams and Wilkins, Philadelphia (2007)

    Google Scholar 

  2. Carter, T., Seah, S., Long, B., Drinkwater, B., Subramanian, S.: Ultrahaptics: multi-point mid-air haptic feedback for touch surfaces. In: 26th Annual ACM Symposium on User Interface Software and Technology, pp. 505–514 (2013)

    Google Scholar 

  3. Ciglar, M.: An ultrasound based instrument generating audible and tactile sound. In: Conference on New Interfaces for Musical Expression (NIME 2010), pp. 10–22 (2010)

    Google Scholar 

  4. Dalecki, D., Child, S., Raeman, C., Carstensen, E.: Tactile perception of ultrasound. J. Acoust. Soc. Am. 97, 3165–3170 (1995)

    Article  Google Scholar 

  5. Ebbini, E., Cain, C.: Multiple-focus ultrasound phased-array pattern synthesis: optimal driving-signal distributions for hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 540–548 (1989)

    Article  Google Scholar 

  6. Eid, M.: Haptogram: aerial display of 3D vibrotactile sensation. In: IEEE International Conference on Multimedia and Expo Workshops, pp. 1–5 (2014)

    Google Scholar 

  7. Gavrilov, L.: The possibility of generating focal regions of complex configurations in application to the problems of stimulation of human receptor structures by focused ultrasound. Acoust. Phys. 54, 269–278 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hasegawa, K., Shinoda, H.: Aerial display of vibrotactile sensation with high spatial-temporal resolution using large-aperture airborne ultrasound phased array. In: World Haptics Conference, vol. 2013, pp. 31–36 (2013)

    Google Scholar 

  9. Hoshi, T.: Development of aerial-input and aerial-tactile-feedback system. In: IEEE World Haptics Conference, pp. 569–573 (2011)

    Google Scholar 

  10. Hoshi, T., Abe, D., Shinoda, H.: Adding tactile reaction to hologram. In: IEEE International Symposium on Robot and Human Interactive Communication, pp. 7–11 (2009)

    Google Scholar 

  11. Hoshi, T., Iwamoto, T., Shinoda, H.: Non-contact tactile sensation synthesized by ultrasound transducers. In: Third Joint Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 256–260 (2009)

    Google Scholar 

  12. Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3, 155–165 (2010)

    Article  Google Scholar 

  13. Inoue, S., Makino, Y., Shinoda, H.: Active touch perception produced by airborne ultrasonic haptic hologram. In: IEEE World Haptics Conference (WHC), pp. 362–367 (2015)

    Google Scholar 

  14. Iwamoto, T., Shinoda, H.: Two-dimensional scanning tactile display using ultrasound radiation pressure. In: IEEE Proceedings of HAPTICS, vol. 46, pp. 57–61 (2006)

    Google Scholar 

  15. Iwamoto, T., Tatezono, M., Hoshi, T., Shinoda, H.: Airborne ultrasound tactile display. In: 35th International Conference and Exhibition on Computer Graphics and Interactive Techniques, p. 1 (2008)

    Google Scholar 

  16. Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 504–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Long, B., Seah, S., Carter, T., Subramanian, S.: Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans. Graph. 33(6), 181 (2014)

    Article  Google Scholar 

  18. Masy, S., Tangen, T., Standal, Ø., Deibele, J., Nasholm, S., Hansen, R., Angelsen, B., Johansen, T.: Nonlinear propagation acoustics of dual-frequency wide-bandexcitation pulses in a focused ultrasound system. J. Acoust. Soc. Am. 128(5), 2695–2703 (2010)

    Article  Google Scholar 

  19. Nishino, H., Goto, R., Kagawa, T., Yoshida, K., Utsumiya, K., Hirooka, J., Osada, T., Nagatomo, N., Aoki, E.: Design with tactile feedback. In: International Conference on Complex, Intelligent and Software Intensive Systems, pp. 53–60 (2011)

    Google Scholar 

  20. Ochiai, Y., Hoshi, T., Rekimoto, J.: Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33, 85 (2014)

    Article  Google Scholar 

  21. Shiokawa, Y., Tazo, A., Konyo, M., Maeno, T.: Hybrid display of realistic tactile sense using ultrasonic vibrator and force display. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3008–3013 (2008)

    Google Scholar 

  22. Takahashi, M., Shinoda, H.: Large aperture airborne ultrasound tactile display using distributed array units. In: SICE Annual Conference, pp. 359–362 (2010)

    Google Scholar 

  23. Yoshino, K., Shinoda, H.: Visio-acoustic screen for contactless touch interface with tactile sensation. In: World Haptics Conference (WHC), pp. 419–423 (2013)

    Google Scholar 

  24. Yoshino, K., Shinoda, H.: Contactless touch interface supporting blind touch interaction by aerial tactile stimulation. In: Haptics Symposium (HAPTICS), pp. 347–350 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Eid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Korres, G., Eid, M. (2016). Characterization of Ultrasound Tactile Display. In: Bello, F., Kajimoto, H., Visell, Y. (eds) Haptics: Perception, Devices, Control, and Applications. EuroHaptics 2016. Lecture Notes in Computer Science(), vol 9774. Springer, Cham. https://doi.org/10.1007/978-3-319-42321-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42321-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42320-3

  • Online ISBN: 978-3-319-42321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics