Skip to main content

Belowground Defence Strategies Against Rhizoctonia

  • Chapter
  • First Online:
Belowground Defence Strategies in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 1200 Accesses

Abstract

Rhizoctonia solani is a species complex of soilborne fungi that are known for their ability to infect a broad range of plant species. Notoriously, isolates of R. solani cause bare-patch and sheath blight diseases on wheat and rice, respectively, and therefore jeopardise global production of these two major cereals. One of the pressing problems in combating R. solani is the lack of strong genetic resistance despite broad germplasm screening programmes. In order to determine future approaches for improving resistance, this chapter summarises the current research into R. solani pathosystems and the types of control strategies that have been employed to protect plants against this disease. Opportunities and challenges for improving resistance to this pathogen will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347

    Article  Google Scholar 

  • Anderson JP, Singh KB (2011) Interactions of Arabidopsis and M. truncatula with the same pathogens differ in dependence on ethylene and ethylene response factors. Plant Signal Behav 6:551–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB (2010) The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol 154:861–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP, Lichtenzveig J, Oliver RP, Singh KB (2013) Medicago truncatula as a model host for studying legume infecting Rhizoctonia solani and identification of a locus affecting resistance to root canker. Plant Pathol 62:908–921

    Article  CAS  Google Scholar 

  • Asad SA, Ali N, Hameed A, Khan SA, Ahmad R, Bilal M, Shahzad M, Tabassum A (2014) Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani. Pol J Microbiol 63:95–103

    PubMed  Google Scholar 

  • Banniza S, Holderness M (2001) Rice sheath blight—pathogen biology and diversity. In: Sreenivasaprasad S, Johnson R (eds) Major fungal diseases of rice: recent advances. Kluwer, Dordrecht, pp 201–211

    Chapter  Google Scholar 

  • Banville GJ (1989) Yield losses and damage to potato plants caused by Rhizoctonia solani Kuhn. Am Potato J 66:821–834

    Article  Google Scholar 

  • Benhamou N, Broglie K, Broglie R, Chet I (1993) Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructural changes and cytochemical aspects of chitin breakdown. Can J Microbiol 39:318–328

    Article  CAS  PubMed  Google Scholar 

  • Boukaew S, Prasertsan P (2014) Factors affecting antifungal activity of Streptomyces philanthi RM-1-138 against Rhizoctonia solani. World J Microbiol Biotechnol 30:323–329

    Article  CAS  PubMed  Google Scholar 

  • Boukaew S, Klinmanee C, Prasertsan P (2013) Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice. World J Microbiol Biotechnol 29:1885–1893

    Article  CAS  PubMed  Google Scholar 

  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broders KD, Parker ML, Melzer MS, Boland GJ (2014) Phylogenetic diversity of Rhizoctonia solani associated with Canola and Wheat in Alberta, Manitoba, and Saskatchewan. Plant Dis 98:1695–1701

    Article  Google Scholar 

  • Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Carling DE, Leiner RH, Westphale PC (1989) Symptoms, signs and yield reduction associated with Rhizoctonia disease of potato induced by tuberborne inoculum of Rhizoctonia solani AG-3. Am Potato J 66:693–701

    Article  Google Scholar 

  • Carling DE, Kuninaga S, Brainard KA (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92:43–50

    Article  CAS  PubMed  Google Scholar 

  • Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Chao G, Singh KB (1996) The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J 10:955–966

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Seguin P, Jabaji SH (2009) Differential expression of genes encoding the phenylpropanoid pathway upon infection of soybean seedlings by Rhizoctonia solani. Can J Plant Pathol 31:356–367

    Article  CAS  Google Scholar 

  • Cubeta MA, Vilgalys R (1997) Population biology of the Rhizoctonia solani complex. Phytopathology 87:480–484

    Article  CAS  PubMed  Google Scholar 

  • Cubeta MA, Thomas E, Dean RA, Jabaji S, Neate SM, Tavantzis S, Toda T, Vilgalys R, Bharathan N, Fedorova-Abrams N, Pakala SB, Pakala SM, Zafar N, Joardar V, Losada L, Nierman WC (2014) Draft genome sequence of the plant-pathogenic soil fungus Rhizoctonia solani anastomosis group 3 strain Rhs1AP. Genome Announc 2(5):e01072-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta K, Baisakh N, Thet KM, Tu J, Datta SK (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    Article  CAS  PubMed  Google Scholar 

  • Deborah SD, Palaniswami A, Vidhyasekaran P, Velazhahan R (2001) Time-course study of the induction of defense enzymes, phenolics and lignin in rice in response to infection by pathogen and non-pathogen. Z Pflanzenk Pflanzen 108:204–216

    CAS  Google Scholar 

  • De Candolle AP (1815) Memoire sur les rhizoctones, nouveau genre de champignons qui attaque les racines, des plantes et en particulier celle de la luzerne cultivee. Mem Mus d’Hist Nat 2:209–216

    Google Scholar 

  • Dharni S, Sanchita, Unni SM, Kurungot S, Samad A, Sharma A, Patra DD (2016) In vitro and in silico antifungal efficacy of nitrogen-doped carbon nanohorn (NCNH) against Rhizoctonia solani. J Biomol Struct Dyn 34(1):152–162

    Article  CAS  PubMed  Google Scholar 

  • Donn S, Almario J, Mullerc D, Moenne-Loccoz Y, Gupta VVSR, Kirkegaard JA, Richardson AE (2014) Rhizosphere microbial communities associated with Rhizoctonia damage at the field and disease patch scale. Appl Soil Ecol 78:37–47

    Article  Google Scholar 

  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64:153–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutton MV, Evans CS, Atkey PT, Wood DA (1993) Oxalate production by basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biot 39:5–10

    Article  CAS  Google Scholar 

  • Elkahoui S, Djebali N, Karkouch I, Ibrahim AH, Kalai L, Bachkovel S, Tabbene O, Limam F (2014) Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum. Appl Biochem Micro 50:184–188

    Article  CAS  Google Scholar 

  • Foley RC, Gleason CA, Anderson JP, Hamann T, Singh KB (2013) Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases. PLoS One 8:e56814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason C, Huang S, Thatcher LF, Foley RC, Anderson CR, Carroll AJ, Millar AH, Singh KB (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc Natl Acad Sci U S A 108:10768–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez M, Pujol M, Metraux JP, Gonzalez-Garcia V, Bolton MD, Borras-Hidalgo O (2011) Tobacco leaf spot and root rot caused by Rhizoctonia solani Kuhn. Mol Plant Pathol 12:209–216

    Article  PubMed  Google Scholar 

  • Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4:327–341

    Article  CAS  PubMed  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Gonzalez ML, Rodriguez-Kessler M, Rodriguez-Guerra R, Gonzalez-Chavira M, Simpson J, Sanchez F, Jimenez-Bremont JF (2011) Differential expression of Phaseolus vulgaris genes induced during the interaction with Rhizoctonia solani. Plant Cell Rep 30:1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Gugel RK, Yitbarek SM, Verma PR, Morrall RAA, Sadasivaiah RS (1987) Etiology of the Rhizoctonia root-rot complex of canola in the Peace River region of Alberta. Can J Plant Pathol 9:119–128

    Article  Google Scholar 

  • Guillon C, St-Arnaud M, Hamel C, Jabaji-Hare SH (2002) Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Can J Bot 80:305–315

    Article  CAS  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB (2014) Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet 10:e1004281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harikrishnan H, Shanmugaiah V, Balasubramanian N, Sharma MP, Kotchoni SO (2014) Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease. World J Microbiol Biotechnol 30:3149–3161

    Article  CAS  PubMed  Google Scholar 

  • Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11:33–42

    Article  CAS  PubMed  Google Scholar 

  • Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Yan W, Zhu C, Agrama HA, Jackson A, Yeater K, Li X, Huang B, Hu B, McClung A, Wu D (2012) Allelic analysis of sheath blight resistance with association mapping in rice. PLoS One 7:e32703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109:19486–19491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung WJ, Park RD, Mabood F, Souleimanov A, Smith DL (2011) Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani. J Microbiol Biotechnol 21:379–386

    CAS  PubMed  Google Scholar 

  • Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E, Raja JAJ, Sudhakar D, Velazhahan R, Samiyappan R, Balasubramanian P (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci 170:203–215

    Article  CAS  Google Scholar 

  • Keijer J (1996) The initial steps of the infection process in Rhizoctonia solani. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic, Dordrecht, pp 149–162

    Chapter  Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmuller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant Microbe Interact 23:446–457

    Article  CAS  PubMed  Google Scholar 

  • Kuninaga S, Yokosawa R (1980) A comparison of DNA base compositions among anastomosis groups in Rhizoctonia solani. Ann Phytopathol Soc Jpn 46:150–158

    Article  Google Scholar 

  • Lane BG (1994) Oxalate, germin, and the extracellular matrix of higher plants. FASEB J 8:294–301

    CAS  PubMed  Google Scholar 

  • Lee FN, Rush MC (1983) Rice sheath blight—a major rice disease. Plant Dis 67:829–832

    Article  Google Scholar 

  • Lehtonen MJ, Somervuo P, Valkonen JP (2008) Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. Phytopathology 98:1190–1198

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Bio-Technology 13:686–691

    Article  CAS  Google Scholar 

  • Livingstone DM, Hampton JL, Phipps PM, Grabau EA (2005) Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137:1354–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z (2015) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol 99:1897–1910

    Article  CAS  PubMed  Google Scholar 

  • Mao B, Liu X, Hu D, Li D (2014) Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination. World J Microbiol Biotechnol 30:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Maruthasalam S, Kalpana K, Kumar KK, Loganathan M, Poovannan K, Raja JA, Kokiladevi E, Samiyappan R, Sudhakar D, Balasubramanian P (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26:791–804

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay A, Huberli D (2014) New fungicide options on way for Rhizoctonia. In: Ground Cover. Grains Research and Development Corporation. https://www.grdc.com.au/Media-Centre/Ground-Cover-Supplements/GCS111/New-fungicide-options-on-way-for-rhizoctonia. Cited 2 May 2015

  • Molla KA, Karmakar S, Chanda PK, Ghosh S, Sarkar SN, Datta SK, Datta K (2013) Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol Plant Pathol 14:910–922

    Article  CAS  PubMed  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Murray GM, Brennan JP (2010) Estimating disease losses to the Australian barley industry. Australas Plant Pathol 39:85–96

    Article  Google Scholar 

  • Nagarajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R, Velazhahan R (2005) Detoxification of oxalic acid by pseudomonas fluorescens strain pfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol Res 160:291–298

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okubara PA, Jones SS (2011) Seedling resistance to Rhizoctonia and Pythium spp. in wheat chromosome group 4 addition lines from Thinopyrum spp. Can J Plant Pathol 33:416–423

    Article  Google Scholar 

  • Okubara PA, Steber CM, Demacon VL, Walter NL, Paulitz TC, Kidwell KK (2009) Scarlet-Rz1, an EMS-generated hexaploid wheat with tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae. Theor Appl Genet 119:293–303

    Article  CAS  PubMed  Google Scholar 

  • Okubara PA, Dickman MB, Blechl AE (2014) Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium. Plant Sci 228:61–70

    Article  CAS  PubMed  Google Scholar 

  • Onate-Sanchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onate-Sanchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol 143:400–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan XB, Chen ZX, Zhang Y, Zhu J, Ji XM (2001) Preliminary evaluation for breeding advancement of resistance to rice sheath blight. Chin J Rice Sci 15:218–220

    Google Scholar 

  • Pannecoucque J, Hofte M (2009) Detection of rDNA ITS polymorphism in Rhizoctonia solani AG 2-1 isolates. Mycologia 101:26–33

    Article  CAS  PubMed  Google Scholar 

  • Park D-S, Sayler RJ, Hong Y-G, Nam M-H, Yang Y (2008) A method for inoculation and evaluation of rice sheath blight disease. Plant Dis 92:25–29

    Article  Google Scholar 

  • Parmeter JRJ, Whitney HS (1970) Taxonomy and nomenclature of the imperfect state. In: Parmeter JR (ed) Rhizoctonia solani: biology and pathology. University of California Press, Berkeley, CA, pp 7–19

    Google Scholar 

  • Parmeter JR, Sherwood RT, Platt WD (1969) Anastomosis grouping among isolates of Thanatephorus cucumeris. Phytopathology 59:1270–1278

    Google Scholar 

  • Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Kiss GB, Cook DR (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    Article  CAS  PubMed  Google Scholar 

  • Perl-Treves R, Foley RC, Chen W, Singh KB (2004) Early induction of the Arabidopsis GSTF8 promoter by specific strains of the fungal pathogen Rhizoctonia solani. Mol Plant Microbe Interact 17:70–80

    Article  CAS  PubMed  Google Scholar 

  • Piquerez SJ, Harvey SE, Beynon JL, Ntoukakis V (2014) Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Front Plant Sci 5:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Salazar O, Julian MC, Rubio V (2000) Primers based on specific rDNA-ITS sequences for PCR detection of Rhizoctonia solani, R. solani AG 2 subgroups and ecological types, and binucleate Rhizoctonia. Mycol Res 104:281–285

    Article  CAS  Google Scholar 

  • Schneebeli K, Mathesius U, Watt M (2015) Brachypodium distachyon is a pathosystem model for the study of the wheat disease Rhizoctonia root rot. Plant Pathol 64:91–100

    Article  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239–244

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Freeman S, Sneh B (2011) Assessment of resistance pathways induced in Arabidopsis thaliana by hypovirulent Rhizoctonia spp. isolates. Phytopathology 101:828–838

    Article  CAS  PubMed  Google Scholar 

  • Sivalingam PN, Vishwakarma SN, Singh US (2006) Role of seed-borne inoculum of Rhizoctonia solani in sheath blight of rice. Indian Phytopathol 59:445–452

    Google Scholar 

  • Smith JD, Kidwell KK, Evans MA, Cook RJ, Smiley RW (2003) Assessment of spring wheat genotypes for disease reaction to Rhizoctonia solani AG-8 in controlled environment and direct-seeded field evaluations. Crop Sci 43:694–700

    Article  Google Scholar 

  • Sneh B, Ichielevich-Auster M (1998) Induced resistance of cucumber seedlings caused by some non-pathogenic Rhizoctonia (np-R) isolates. Phytoparasitica 26:27–38

    Article  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    Article  CAS  Google Scholar 

  • Srinivasachary L, Willocquet L, Savary S (2011) Resistance to rice sheath blight (Rhizoctonia solani Kuhn) [Teleomorph: Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives. Euphytica 178:1–22

    Article  Google Scholar 

  • Stretton HM, Baker KF, Flentje NT, McKenzie AR (1964) Formation of basidial stage of some isolates of Rhizoctonia. Phytopathology 54:1093–1095

    Google Scholar 

  • Sweetingham MW, Cruickshank RH, Wong DH (1986) Pectic zymograms and taxonomy and pathogenicity of the Ceratobasidiaceae. Trans Br Mycol Soc 86:305–311

    Article  CAS  Google Scholar 

  • Thatcher LF, Anderson JP, Singh KB (2005) Plant defence responses: what have we learnt from Arabidopsis? Funct Plant Biol 32:1–19

    Article  CAS  Google Scholar 

  • Tisserat N, Fry J, Green D (1994) Managing Rhizoctonia large patch. Golf Course Manag 62:58–61

    Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • van Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4:111–116

    Article  PubMed  Google Scholar 

  • Venu RC, Jia Y, Gowda M, Jia MH, Jantasuriyarat C, Stahlberg E, Li H, Rhineheart A, Boddhireddy P, Singh P, Rutger N, Kudrna D, Wing R, Nelson JC, Wang GL (2007) RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection. Mol Genet Genomics 278:421–431

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu LM, Wang ZG, Huang SW (2013) Genetic structure and aggressiveness of Rhizoctonia solani AG1-IA, the cause of sheath blight of rice in Southern China. J Phytopathol 161:753–762

    Article  CAS  Google Scholar 

  • Wang R, Lu L, Pan X, Hu Z, Ling F, Yan Y, Liu Y, Lin Y (2015) Functional analysis of OsPGIP1 in rice sheath blight resistance. Plant Mol Biol 87:181–191

    Article  CAS  PubMed  Google Scholar 

  • Wen ZH, Zeng YX, Ji ZJ, Yang CD (2015) Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice. Genet Mol Res 14:1636–1649

    Article  CAS  PubMed  Google Scholar 

  • Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Puhler A, Schluter A (2013) Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J Biotechnol 167:142–155

    Article  CAS  PubMed  Google Scholar 

  • Wibberg D, Rupp O, Jelonek L, Krober M, Verwaaijen B, Blom J, Winkler A, Goesmann A, Grosch R, Puhler A, Schluter A (2015) Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system. J Biotechnol 203:19–21

    Article  CAS  PubMed  Google Scholar 

  • Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SJ, Hong SJ, Choi W, Kim BS (2014) Antifungal activity of Paenibacillus kribbensis strain T-9 Isolated from soils against several plant pathogenic fungi. Plant Pathol J 30:102–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, Schillinger WF, Paulitz TC (2013) Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl Environ Microbiol 79:7428–7438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 4:1424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the Grains Research & Development Corporation for financial support and apologise to the authors of the work we could not cite in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brendan N. Kidd or Jonathan P. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kidd, B.N., DeBoer, K.D., Singh, K.B., Anderson, J.P. (2016). Belowground Defence Strategies Against Rhizoctonia . In: Vos, C., Kazan, K. (eds) Belowground Defence Strategies in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-42319-7_5

Download citation

Publish with us

Policies and ethics