Skip to main content

Belowground Defence Strategies in Plants: Parallels Between Root Responses to Beneficial and Detrimental Microbes

  • Chapter
  • First Online:
Belowground Defence Strategies in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plant roots, as underground structures, are hidden from view, difficult to work with and therefore typically understudied, especially in agricultural research. In addition to providing crucial support for aerial tissues and acquiring nutrients, roots engage with filamentous microorganisms in the soil. These interactions have outcomes ranging from positive to negative and therefore roots must respond appropriately to different microbes to ensure plant survival. While leaf responses to filamentous pathogens have been well researched, we lack comparative information from roots. Moreover, we lack knowledge on the extent of overlap of root responses to microbes that share similarities in morphology, biochemistry and colonisation strategy but that result in different outcomes. In this chapter, we highlight current knowledge on parallels in root responses to beneficial and detrimental filamentous microorganisms. We also emphasise the importance of root studies and advocate the development of new host systems that allow comparative root–microbe interaction research. Ultimately, understanding of this field at the molecular level could inform breeding for pathogen resistance in crops while promoting cooperative root interactions with other microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz B, Kogel KH, Franken P, Waller F (2010) Piriformospora indica mycorrhization increases grain yield by accelerating early development of barley plants. Plant Signal Behav 5(12):1685–1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic, Amsterdam

    Google Scholar 

  • Anderson JP, Lichtenzveig J, Oliver RP, Singh KB (2013) Medicago truncatula as a model host for studying legume infecting Rhizoctonia solani and identification of a locus affecting resistance to root canker. Plant Pathol 62(4):908–921. doi:10.1111/J.1365-3059.2012.02694.X

    Article  CAS  Google Scholar 

  • Andrade-Linares DR, Grosch R, Franken P, Rexer KH, Kost G, Restrepo S, de Garcia MCC, Maximova E (2011a) Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes. Mycologia 103(4):710–721. doi:10.3852/10-329

    Article  PubMed  Google Scholar 

  • Andrade-Linares DR, Grosch R, Restrepo S, Krumbein A, Franken P (2011b) Effects of dark septate endophytes on tomato plant performance. Mycorrhiza 21(5):413–422. doi:10.1007/s00572-010-0351-1

    Article  PubMed  Google Scholar 

  • Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303(5662):1364–1367. doi:10.1126/science.1092986

    Article  CAS  PubMed  Google Scholar 

  • Ane JM, Zhu H, Frugoli J (2008) Recent advances in Medicago truncatula genomics. Int J Plant Genome 2008:256597. doi:10.1155/2008/256597

    Google Scholar 

  • Badreddine I, Lafitte C, Heux L, Skandalis N, Spanou Z, Martinez Y, Esquerre-Tugaye MT, Bulone V, Dumas B, Bottin A (2008) Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches. Eukaryot Cell 7(11):1980–1993. doi:10.1128/EC.00091-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballhorn DJ, Younginger BS, Kautz S (2014) An aboveground pathogen inhibits belowground rhizobia and arbuscular mycorrhizal fungi in Phaseolus vulgaris. BMC Plant Biol 14:321. doi:10.1186/s12870-014-0321-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balmer D, Mauch-Mani B (2013) More beneath the surface? Root versus shoot antifungal plant defenses. Front Plant Sci 4:256. doi:10.3389/fpls.2013.00256

    PubMed  PubMed Central  Google Scholar 

  • Ben C, Toueni M, Montanari S, Tardin MC, Fervel M, Negahi A, Saint-Pierre L, Mathieu G, Gras MC, Noel D, Prosperi JM, Pilet-Nayel ML, Baranger A, Huguet T, Julier B, Rickauer M, Gentzbittel L (2013) Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt. J Exp Bot 64(1):317–332. doi:10.1093/jxb/ers337

    Article  CAS  PubMed  Google Scholar 

  • Bircher U, Hohl HR (1997) Surface glycoproteins associated with appressorium formation and adhesion in Phytophthora palmivora. Mycol Res 101:769–775. doi:10.1017/S0953756296003279

    Article  CAS  Google Scholar 

  • Blancaflor EB, Zhao L, Harrison MJ (2001) Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217(4):154–165

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13(9):492–498. doi:10.1016/j.tplants.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

    Article  PubMed  CAS  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A, Tohge T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221. doi:10.1371/journal.ppat.1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caillaud MC, Piquerez SJ, Fabro G, Steinbrenner J, Ishaque N, Beynon J, Jones JD (2012) Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J 69(2):252–265. doi:10.1111/j.1365-313X.2011.04787.x

    Article  CAS  PubMed  Google Scholar 

  • Carlson H, Stenram U, Gustafsson M, Jansson HB (1991) Electron-microscopy of barley root infection by the fungal pathogen Bipolaris-Sorokiniana. Can J Bot 69(12):2724–2731

    Article  Google Scholar 

  • Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12(9):1647–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189(1):347–355. doi:10.1111/j.1469-8137.2010.03464.x

    Article  CAS  PubMed  Google Scholar 

  • Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, Parniske M (2008) Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20(12):3467–3479. doi:10.1105/tpc.108.063255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592. doi:10.1104/pp.108.130369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daft MJ, Nicolson TH (1966) Effect of Endogone mycorrhiza on plant growth. I. New Phytol 65:343–350

    Article  Google Scholar 

  • Daft MJ, Nicolson TH (1969) Effect of endogone mycorrhiza on plant growth. II. New Phytol 68:953–963

    Article  Google Scholar 

  • Deacon JW (1996) Ecological implications of recognition events in the pre-infection stages of root pathogens. New Phytol 133(1):135–145. doi:10.1111/J.1469-8137.1996.Tb04349.X

    Article  Google Scholar 

  • De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath: belowground defense strategies in plants. Trends Plant Sci 20(2):91–101. doi:10.1016/j.tplants.2014.09.007

    Article  PubMed  CAS  Google Scholar 

  • de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329(5994):953–955. doi:10.1126/Science.1190859

    Article  PubMed  CAS  Google Scholar 

  • Delaux PM, Becard G, Combier JP (2013) NSP1 is a component of the Myc signaling pathway. New Phytol 199(1):59–65. doi:10.1111/nph.12340

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A 103(49):18450–18457. doi:10.1073/pnas.0605697103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditengou FA, Muller A, Rosenkranz M, Felten J, Lasok H, van Doorn MM, Legue V, Palme K, Schnitzler JP, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:Artn 6279. doi:10.1038/Ncomms7279

    Article  CAS  Google Scholar 

  • Djebali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathe C, Bottin A, Cazaux M, Pilet-Nayel ML, Baranger A, Aouani ME, Esquerre-Tugaye MT, Dumas B, Huguet T, Jacquet C (2009) Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Mol Plant Microbe Interact 22(9):1043–1055. doi:10.1094/MPMI-22-9-1043

    Article  CAS  PubMed  Google Scholar 

  • Djebali N, Mhadhbi H, Lafitte C, Dumas B, Esquerre-Tugaye MT, Aouani ME, Jacquet C (2011) Hydrogen peroxide scavenging mechanisms are components of Medicago truncatula partial resistance to Aphanomyces euteiches. Eur J Plant Pathol 131(4):559–571. doi:10.1007/S10658-011-9831-1

    Article  CAS  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234(2):419–427. doi:10.1007/s00425-011-1452-6

    Article  CAS  PubMed  Google Scholar 

  • Dormann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Huckelhoven R (2014) Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. New Phytol 204(4):815–822. doi:10.1111/nph.12978

    Article  PubMed  CAS  Google Scholar 

  • Drenth A, Guest DI (2004) Diversity and management of Phytophthora in Southeast Asia, vol 114, ACIAR monograph series. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LCP, Zhou J, Liebrand TWH, Xie C, Govers F, Robatzek S, van der Vossen EAG, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA (2015) Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat Plants 1(4):15034. doi:10.1038/nplants.2015.34

    Article  CAS  PubMed  Google Scholar 

  • Dufresne M, Osbourn AE (2001) Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant Microbe Interact 14(3):300–307. doi:10.1094/MPMI.2001.14.3.300

    Article  CAS  PubMed  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417(6892):962–966. doi:10.1038/nature00842

    Article  CAS  PubMed  Google Scholar 

  • Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, von Tiedemann A (2007) Differential interactions of Verticillium longisporum and V-dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118(3):259–274. doi:10.1007/S10658-007-9144-6

    Article  Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Buttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20(3):191–200. doi:10.1007/S00572-009-0279-5

    Article  PubMed  Google Scholar 

  • Fawke S, Doumane M, Schornack S (2015) Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 79(3):263–280. doi:10.1128/MMBR.00010-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151(4):1991–2005. doi:10.1104/pp.109.147231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205(2):743–756. doi:10.1111/Nph.13024

    Article  CAS  PubMed  Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96(6):1455–1464. doi:10.1007/s00253-012-4506-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franken P, Donges K, Grunwald U, Kost G, Rexer KH, Tamasloukht M, Waschke A, Zeuske D (2007) Gene expression analysis of arbuscule development and functioning. Phytochemistry 68(1):68–74. doi:10.1016/j.phytochem.2006.09.027

    Article  CAS  PubMed  Google Scholar 

  • Freitag J, Lanver D, Bohmer C, Schink KO, Bolker M, Sandrock B (2011) Septation of infectious hyphae is critical for appressoria formation and virulence in the smut fungus Ustilago maydis. PLoS Pathog 7(5):e1002044. doi:10.1371/journal.ppat.1002044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freytag S, Arabatzis N, Hahlbrock K, Schmelzer E (1994) Reversible cytoplasmic rearrangements precede wall apposition, hypersensitive cell-death and defense-related gene activation in potato Phytophthora-Infestans interactions. Planta 194(1):123–135

    Article  CAS  Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 113(1):19–33. doi:10.1093/aob/mct258

    Article  CAS  PubMed  Google Scholar 

  • Garcia VG, Onco MAP, Susan VR (2006) Review. Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4(1):55–79

    Article  Google Scholar 

  • Gaulin E, Jacquet C, Bottin A, Dumas B (2007) Root rot disease of legumes caused by Aphanomyces euteiches. Mol Plant Pathol 8(5):539–548. doi:10.1111/J.1364-3703.2007.00413.X

    Article  PubMed  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17(12):3489–3499. doi:10.1105/Tpc.105.035410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20(5):1407–1420. doi:10.1105/tpc.108.059014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P (2009) Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to Arbuscular mycorrhizal fungi. Plant Physiol 149(3):1424–1434. doi:10.1104/Pp.108.132225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Ivanov S, Fendrych M, Faccio A, Zarsky V, Bisseling T, Bonfante P (2012) Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas. Plant Cell Physiol 53(1):244–255. doi:10.1093/pcp/pcr170

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pages V, Novero M, Rey T, Fournier J, Rochange S, Becard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198(1):190–202. doi:10.1111/nph.12146

    Article  PubMed  Google Scholar 

  • Gludovacz TV, Deora A, McDonald MR, Gossen BD (2014) Cortical colonization by Plasmodiophora brassicae in susceptible and resistant cabbage cultivars. Eur J Plant Pathol 140(4):859–862. doi:10.1007/S10658-014-0492-8

    Article  Google Scholar 

  • Gobbato E, Marsh JF, Vernie T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, Mysore KS, Denarie J, Schultze M, Oldroyd GE (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22(23):2236–2241. doi:10.1016/j.cub.2012.09.044

    Article  CAS  PubMed  Google Scholar 

  • Gobbato E, Wang E, Higgins G, Bano SA, Henry C, Schultze M, Oldroyd GE (2013) RAM1 and RAM2 function and expression during arbuscular mycorrhizal symbiosis and Aphanomyces euteiches colonization. Plant Signal Behav 8(10):pii: e26049. doi:10.4161/psb.26049

    Article  CAS  Google Scholar 

  • Gough C, Cullimore J (2011) Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol Plant Microbe Interact 24(8):867–878. doi:10.1094/MPMI-01-11-0019

    Article  CAS  PubMed  Google Scholar 

  • Griffis AH, Groves NR, Zhou X, Meier I (2014) Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease. Front Plant Sci 5:129. doi:10.3389/fpls.2014.00129

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu M, Chen A, Dai X, Liu W, Xu G (2011) How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? Plant Signal Behav 6(9):1300–1304. doi:10.4161/psb.6.9.16365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutjahr C, Siegler H, Haga K, Iino M, Paszkowski U (2015) Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis. PLoS One 10(4):e0123422. doi:10.1371/journal.pone.0123422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamel LP, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232(4):787–806. doi:10.1007/s00425-010-1215-9

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (1999) Biotrophic interfaces and nutrient transport in plant fungal symbioses. J Exp Bot 50:1013–1022. doi:10.1093/Jexbot/50.Suppl_1.1013

    Article  CAS  Google Scholar 

  • Harrison MJ (2012) Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 15(6):691–698. doi:10.1016/j.pbi.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444. doi:10.1093/jxb/err430

    Article  CAS  PubMed  Google Scholar 

  • Hermanns M, Slusarenko AJ, Schlaich NL (2008) The early organelle migration response of Arabidopsis to Hyaloperonospora arabidopsidis is independent of RAR1, SGT1b, PAD4 and NPR1. Physiol Mol Plant Pathol 72(1–3):96–101. doi:10.1016/J.Pmpp.2008.06.002

    Article  CAS  Google Scholar 

  • Hoefle C, Huesmann C, Schultheiss H, Bornke F, Hensel G, Kumlehn J, Huckelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23(6):2422–2439. doi:10.1105/tpc.110.082131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433(7025):527–531. doi:10.1038/nature03237

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Tahara S (2001) Chemotaxis of fungal zoospores, with special reference to Aphanomyces cochlioides. Biosci Biotechnol Biochem 65(9):1933–1948. doi:10.1271/bbb.65.1933

    Article  CAS  PubMed  Google Scholar 

  • Ivanov S, Harrison MJ (2014) A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Plant J 80(6):1151–1163. doi:10.1111/tpj.12706

    Article  CAS  PubMed  Google Scholar 

  • Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T (2012) Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci U S A 109(21):8316–8321. doi:10.1073/pnas.1200407109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson A, Goud JKC, Dixelius C (2006) Plant host range of Verticillium longisporum and microsclerotia density in Swedish soils. Eur J Plant Pathol 114(2):139–149. doi:10.1007/S10658-005-2333-2

    Article  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11(4):207–211. doi:10.1007/S005720100112

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140(2):295–310. doi:10.1046/J.1469-8137.1998.00265.X

    Article  Google Scholar 

  • Kageyama K (2014) Molecular taxonomy and its application to ecological studies of Pythium species. J Gen Plant Pathol 80(4):314–326. doi:10.1007/S10327-014-0526-2

    Article  Google Scholar 

  • Kageyama K, Asano T (2009) Life cycle of Plasmodiophora brassicae. J Plant Growth Regul 28(3):203–211. doi:10.1007/S00344-009-9101-Z

    Article  CAS  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103(29):11086–11091. doi:10.1073/pnas.0508882103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882. doi:10.1126/science.1208473

    Article  CAS  PubMed  Google Scholar 

  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol 159(1):501–516. doi:10.1104/pp.112.193706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, O’Connell R, Maekawa-Yoshikawa M, Uemura T, Neumann U, Schulze-Lefert P (2014) The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J 79(5):835–847. doi:10.1111/tpj.12591

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Kouzai Y, Kaku H, Shibuya N, Minami E, Nishizawa Y (2010) Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice. Plant J 64(2):343–354. doi:10.1111/j.1365-313X.2010.04328.x

    Article  CAS  PubMed  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21(14):1204–1209. doi:10.1016/j.cub.2011.06.044

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Hata S (2010) Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol 51(3):341–353. doi:10.1093/pcp/pcq013

    Article  CAS  PubMed  Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44(3):516–529. doi:10.1111/j.1365-313X.2005.02545.x

    Article  CAS  PubMed  Google Scholar 

  • Kouzai Y, Nakajima K, Hayafune M, Ozawa K, Kaku H, Shibuya N, Minami E, Nishizawa Y (2014) CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Mol Biol 84(4-5):519–528. doi:10.1007/s11103-013-0149-6

    Article  CAS  PubMed  Google Scholar 

  • Kroon LPNM, Brouwer H, de Cock AWAM, Govers F (2012) The genus Phytophthora anno 2012. Phytopathology 102(4):348–364. doi:10.1094/Phyto-01-11-0025

    Article  PubMed  Google Scholar 

  • Kumar J, Schafer P, Huckelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel KH (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3(4):185–195. doi:10.1046/J.1364-3703.2002.00120.X

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155:780–790. doi:10.1099/Mic.0.019869-0

    Article  CAS  PubMed  Google Scholar 

  • Lace B, Genre A, Woo S, Faccio A, Lorito M, Bonfante P (2015) Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride. Environ Microbiol Rep 7(1):64–77. doi:10.1111/1758-2229.12221

    Article  CAS  PubMed  Google Scholar 

  • Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Dohlemann S, von Wiren N, Parniske M, Zuccaro A (2013) Host-related metabolic cues affect colonization strategies of a root endophyte. Proc Natl Acad Sci USA 110(34):13965–13970. doi:10.1073/Pnas.1301653110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin RP, English JT, Mihail JD (1995) Effects of infection by Pythium spp on root-system morphology of alfalfa seedlings. Phytopathology 85(4):430–435. doi:10.1094/Phyto-85-430

    Article  Google Scholar 

  • Lauressergues D, Delaux PM, Formey D, Lelandais-Briere C, Fort S, Cottaz S, Becard G, Niebel A, Roux C, Combier JP (2012) The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72(3):512–522. doi:10.1111/j.1365-313X.2012.05099.x

    Article  CAS  PubMed  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303(5662):1361–1364. doi:10.1126/science.1093038

    Article  CAS  PubMed  Google Scholar 

  • Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am J Bot 94(11):1756–1777. doi:10.3732/ajb.94.11.1756

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23(10):3853–3865. doi:10.1105/tpc.111.089771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou JM, Chai J (2012) Chitin-induced dimerization activates a plant immune receptor. Science 336(6085):1160–1164. doi:10.1126/science.1218867

    Article  CAS  PubMed  Google Scholar 

  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545. doi:10.1146/annurev-arplant-043014-114623

    Article  CAS  PubMed  Google Scholar 

  • Lu YJ, Schornack S, Spallek T, Geldner N, Chory J, Schellmann S, Schumacher K, Kamoun S, Robatzek S (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 14(5):682–697. doi:10.1111/j.1462-5822.2012.01751.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K (2015) Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS One 10(4):Artn E0121902. doi:10.1371/Journal.Pone.0121902

    Article  CAS  Google Scholar 

  • Maag D, Kandula DRW, Muller C, Mendoza-Mendoza A, Wratten SD, Stewart A, Rostas M (2014) Trichoderma atroviride LU132 promotes plant growth but not induced systemic resistance to Plutella xylostella in oilseed rape. Biocontrol 59(2):241–252. doi:10.1007/S10526-013-9554-7

    Article  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328):58–63. doi:10.1038/nature09622

    Article  CAS  PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (1999) Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J Plant Nutr 22(4-5):835–853. doi:10.1080/01904169909365675

    Article  CAS  Google Scholar 

  • Mandyam KG, Jumpponen A (2015) Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol 5:Artn 776. doi:10.3389/Fmicb.2014.00776

    Article  Google Scholar 

  • Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22(9):3177–3187. doi:10.1105/tpc.110.078048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth-promoting fungus, Trichoderma koningii suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26(2):128–134. doi:10.1264/Jsme2.Me10176

    Article  PubMed  Google Scholar 

  • Mazaheri-Naeini M, Sabbagh SK, Martinez Y, Sejalon-Delmas N, Roux C (2015) Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biol 119(2–3):145–153. doi:10.1016/J.Funbio.2014.12.002

    Article  PubMed  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24(1):322–335. doi:10.1105/tpc.111.092957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13(2):210–226. doi:10.1111/j.1462-5822.2010.01530.x

    Article  CAS  PubMed  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49):19613–19618. doi:10.1073/pnas.0705147104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, Akiyama K, Kaku H, Nishizawa Y, Shibuya N, Nakagawa T (2014) The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol 55(11):1864–1872. doi:10.1093/pcp/pcu129

    Article  CAS  PubMed  Google Scholar 

  • Morandi D, Prado E, Sagan M, Duc G (2005) Characterisation of new symbiotic Medicago truncatula (Gaertn.) mutants, and phenotypic or genotypic complementary information on previously described mutants. Mycorrhiza 15(4):283–289. doi:10.1007/s00572-004-0331-4

    Article  PubMed  Google Scholar 

  • Moran-Diez ME, Trushina N, Lamdan NL, Rosenfelder L, Mukherjee PK, Kenerley CM, Horwitz BA (2015) Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genomics 16:Artn 8. doi:10.1186/S12864-014-1208-3

    Article  CAS  Google Scholar 

  • Morris PF, Ward EWB (1992) Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol Plant Pathol 40(1):17–22. doi:10.1016/0885-5765(92)90067-6

    Article  CAS  Google Scholar 

  • Murray JD, Muni RR, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65(2):244–252. doi:10.1111/j.1365-313X.2010.04415.x

    Article  CAS  PubMed  Google Scholar 

  • Nars A, Lafitte C, Chabaud M, Drouillard S, Melida H, Danoun S, Le Costaouec T, Rey T, Benedetti J, Bulone V, Barker DG, Bono JJ, Dumas B, Jacquet C, Heux L, Fliegmann J, Bottin A (2013a) Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula. PLoS One 8(9):e75039. doi:10.1371/journal.pone.0075039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nars A, Rey T, Lafitte C, Vergnes S, Amatya S, Jacquet C, Dumas B, Thibaudeau C, Heux L, Bottin A, Fliegmann J (2013b) An experimental system to study responses of Medicago truncatula roots to chitin oligomers of high degree of polymerization and other microbial elicitors. Plant Cell Rep 32(4):489–502. doi:10.1007/s00299-012-1380-3

    Article  CAS  PubMed  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144(2):673–681. doi:10.1104/pp.106.086959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MA, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139. doi:10.3389/fpls.2013.00139

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263. doi:10.1038/nrmicro2990

    Article  CAS  PubMed  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41(2):291–303. doi:10.1111/j.1365-313X.2004.02292.x

    Article  CAS  PubMed  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26(11):1682–1688. doi:10.1016/J.Cropro.2007.02.010

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775. doi:10.1038/Nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  • Peraldi A, Beccari G, Steed A, Nicholson P (2011) Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol 11:Artn 100. doi:10.1186/1471-2229-11-100

    Article  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53(368):525–534

    Article  CAS  PubMed  Google Scholar 

  • Pressel S, Ligrone R, Duckett JG, Davis EC (2008) A novel ascomycetous endophytic association in the rhizoids of the leafy liverwort family, Schistochilaceae (Jungermanniidae, Hepaticopsida). Am J Bot 95(5):531–541. doi:10.3732/ajb.2007171

    Article  PubMed  Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151(2):809–819. doi:10.1104/pp.109.141879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61(3):482–494. doi:10.1111/j.1365-313X.2009.04072.x

    Article  CAS  PubMed  Google Scholar 

  • Pumplin N, Zhang X, Noar RD, Harrison MJ (2012) Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proc Natl Acad Sci U S A 109(11):E665–E672. doi:10.1073/pnas.1110215109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafiqi M, Jelonek L, Akum NF, Zhang F, Kogel KH (2013) Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Front Plant Sci 4:228. doi:10.3389/fpls.2013.00228

    Article  PubMed  PubMed Central  Google Scholar 

  • Rey T, Schornack S (2013) Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biol 14(6):121. doi:10.1186/gb-2013-14-6-121

    PubMed  PubMed Central  Google Scholar 

  • Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C (2013) NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytol 198(3):875–886. doi:10.1111/nph.12198

    Article  CAS  PubMed  Google Scholar 

  • Rey T, Chatterjee A, Buttay M, Toulotte J, Schornack S (2015) Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol 206(2):497–500. doi:10.1111/Nph.13233

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Gianinazzi S, Gianinazzi-Pearson V (1999) Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza 9(4):237–240. doi:10.1007/S005720050273

    Article  CAS  Google Scholar 

  • Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turra D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant Microbe Interact 28(2):167–179. doi:10.1094/MPMI-07-14-0194-R

    Article  CAS  PubMed  Google Scholar 

  • Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165(2):567–579. doi:10.1111/j.1469-8137.2004.01251.x

    Article  CAS  PubMed  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant Microbe Interact 13(7):763–777. doi:10.1094/MPMI.2000.13.7.763

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vallet A, Mesters JR, Thomma BP (2015) The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev 39(2):171–183. doi:10.1093/femsre/fuu003

    Article  PubMed  Google Scholar 

  • Scherm B, Balmas V, Spanu F, Pani G, Delogu G, Pasquali M, Migheli Q (2013) Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol Plant Pathol 14(4):323–341. doi:10.1111/Mpp.12011

    Article  CAS  PubMed  Google Scholar 

  • Schneebeli K, Mathesius U, Watt M (2015) Brachypodium distachyon is a pathosystem model for the study of the wheat disease rhizoctonia root rot. Plant Pathol 64(1):91–100. doi:10.1111/Ppa.12227

    Article  Google Scholar 

  • Schreiber C, Slusarenko AJ, Schaffrath U (2011) Organ identity and environmental conditions determine the effectiveness of nonhost resistance in the interaction between Arabidopsis thaliana and Magnaporthe oryzae. Mol Plant Pathol 12(4):397–402. doi:10.1111/j.1364-3703.2010.00682.x

    Article  PubMed  Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431(7008):582–586. doi:10.1038/nature02880

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64(2):204–214. doi:10.1111/j.1365-313X.2010.04324.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2015) Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166(2):171–182. doi:10.1111/Aab.12160

    Article  CAS  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20(4):406–419. doi:10.1093/Glycob/Cwp201

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner S, Mammerler R (2007) Effect of flavonoids on the development of Fusarium oxysporum f. sp lycopersici. J Plant Interact 2(1):17–23. doi:10.1080/17429140701409352

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Ann Rev Phytopathol 47:233–263. doi:10.1146/annurev.phyto.112408.132637

    Article  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417(6892):959–962. doi:10.1038/nature00841

    Article  CAS  PubMed  Google Scholar 

  • Sukno SA, Garcia VM, Shaw BD, Thon MR (2008) Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microb 74(3):823–832. doi:10.1128/Aem.01165-07

    Article  CAS  Google Scholar 

  • Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E, Venkateshwaran M, Fort S, Morris RJ, Ane JM, Denarie J, Oldroyd GE (2015) Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27(3):823–838. doi:10.1105/tpc.114.131326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M (2013) CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol 54(10):1711–1723. doi:10.1093/pcp/pct114

    Article  CAS  PubMed  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136(4):3864–3876. doi:10.1104/pp.104.052159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33(4):775–792. doi:10.1046/J.1365-313x.2003.01673.X

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcon-Aguilar C, Becard G, Bonfante P, Harrison MJ, Kuster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JPW, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193(3):755–769. doi:10.1111/J.1469-8137.2011.03948.X

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frey NFD, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclauxm FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, Clemente HS, Shapiro H, Van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young PW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110(50):20117–20122. doi:10.1073/Pnas.1313452110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschaplinski TJ, Plett JM, Engle NL, Deveau A, Cushman KC, Martin MZ, Doktycz MJ, Tuskan GA, Brun A, Kohler A, Martin F (2014) Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol Plant Microbe Interact 27(6):546–556. doi:10.1094/Mpmi-09-13-0286-R

    Article  CAS  PubMed  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12(4):341–354. doi:10.1111/j.1364-3703.2010.00674.x

    Article  CAS  PubMed  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20(1):1–11. doi:10.1007/s00572-009-0260-3

    Article  PubMed  Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Vadassery J, Oelmuller R (2009) Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant Signal Behav 4(11):1024–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Ranf S, Drzewiecki C, Mithofer A, Mazars C, Scheel D, Lee J, Oelmuller R (2009) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 59(2):193–206. doi:10.1111/j.1365-313X.2009.03867.x

    Article  CAS  PubMed  Google Scholar 

  • Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmuller R (2015) The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC Plant Biol 15:58. doi:10.1186/s12870-015-0419-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Buyten E, Hofte M (2013) Pythium species from rice roots differ in virulence, host colonization and nutritional profile. BMC Plant Biol 13:203. doi:10.1186/1471-2229-13-203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  • Veiga RSL, Faccio A, Genre A, Pieterse CMJ, Bonfante P, van der Heijden MGA (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36(11):1926–1937. doi:10.1111/Pce.12102

    PubMed  Google Scholar 

  • Venard C, Vaillancourt L (2007) Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum. Mycologia 99(3):368–377

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363. doi:10.1007/s00572-005-0033-6

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21(9):2898–2913. doi:10.1105/tpc.109.067587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GE (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22(23):2242–2246. doi:10.1016/j.cub.2012.09.043

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang Y, Wen Y, Berkey R, Ma X, Pan Z, Bendigeri D, King H, Zhang Q, Xiao S (2013) A comprehensive mutational analysis of the Arabidopsis resistance protein RPW8.2 reveals key amino acids for defense activation and protein targeting. Plant Cell 25(10):4242–4261. doi:10.1105/tpc.113.117226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegel E, Schauser L, Sandal N, Stougaard J, Parniske M (1998) Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol Plant Microbe Interact 11(9):933–936. doi:10.1094/Mpmi.1998.11.9.933

    Article  CAS  Google Scholar 

  • Yamazaki A, Hayashi M (2015) Building the interaction interfaces: host responses upon infection with microorganisms. Curr Opin Plant Biol 23:132–139. doi:10.1016/j.pbi.2014.12.003

    Article  PubMed  Google Scholar 

  • Yedidia II, Benhamou N, Chet II (1999) Induction of defense responses in cucumber plants (Cucumis sativus L. ) by the biocontrol agent trichoderma harzianum. Appl Environ Microbiol 65(3):1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi M, Valent B (2013) Communication between filamentous pathogens and plants at the biotrophic interface. Ann Rev Phytopathol 51:587–611. doi:10.1146/annurev-phyto-081211-172916

    Article  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227(1):125–132. doi:10.1007/s00425-007-0600-5

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kisugi T, Nomura T, Yoneyama K (2013) Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238(5):885–894. doi:10.1007/s00425-013-1943-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldroyd GE, Wang E (2015) The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81(2):258–267. doi:10.1111/tpj.12723

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank The Gatsby Charitable Foundation (RG62472 to R.L.F and S.S.) and Royal Society (RG69135 to S. S.) for funding, Dario Fisher for assistance with the production of Fig. 1 and Dr. Féi Māo for motivational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schornack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Le Fevre, R., Schornack, S. (2016). Belowground Defence Strategies in Plants: Parallels Between Root Responses to Beneficial and Detrimental Microbes. In: Vos, C., Kazan, K. (eds) Belowground Defence Strategies in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-42319-7_2

Download citation

Publish with us

Policies and ethics