Skip to main content

Belowground Defence Strategies in Plants: The Plant–Trichoderma Dialogue

  • Chapter
  • First Online:
Belowground Defence Strategies in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Trichoderma spp. are cosmopolitan soil fungi that hold great promise as biocontrol organisms. Their biocontrol capacity was initially thought to be based on their direct suppressive effects on plant pathogens, with most strains showing mycoparasitic potential and producing a large variety of enzymes and secondary metabolites. More recently however Trichoderma was also recognized as an opportunistic plant root colonizer that can trigger induced systemic resistance (ISR) in the plant, typically leading to a more rapid and robust systemic activation of defences after pathogen attack. As our understanding of the Trichoderma–plant interaction advances, it is becoming increasingly clear that Trichoderma is initially also perceived by the host plant as a potential invader. Trichoderma thus needs to find a way to deal with the plant defence response, either by avoiding or suppressing it, in order to establish a durable interaction with their host. In this chapter, we cover our current knowledge on the initial dialogue between Trichoderma and its host, including the defence responses mounted by the host plant and how Trichoderma attempts to circumvent it. Next, we describe how the host plant can benefit from this interaction. Trichoderma colonization can indeed prime the host defence, enabling it to react faster and stronger to subsequent pathogen attack. We then conclude with examples of Trichoderma-induced resistance and direct antagonism against different types of soil pathogens and pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affokpon A, Coyne DL, Htay CC et al (2011) Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol Biochem 43:600–608

    Article  CAS  Google Scholar 

  • Albus U, Baier R, Holst O et al (2001) Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytol 151:597–606

    Article  CAS  Google Scholar 

  • Alfano G, Ivey MLL, Cakir C et al (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum T382. Phytopathology 97:429–437

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, Behboudi K, Agmadzadeh M et al (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. PS14. Biol Control 65:14–23

    Article  Google Scholar 

  • Alonso-Ramirez A, Poveda J, Martin I et al (2014) Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol Plant Pathol 15:823–831

    Article  CAS  PubMed  Google Scholar 

  • Anith KN, Faseela KM, Archana PA et al (2011) Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis 55:11–17

    Article  Google Scholar 

  • Atanasova L, Le Crom S, Gruber S et al (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979

    Article  CAS  PubMed  Google Scholar 

  • Avni A, Bailey BA, Mattoo AK et al (1994) Induction of ethylene biosynthesis in nicotiana-tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (acc) synthase and acc oxidase transcripts. Plant Phys 106:1049–1055

    Article  CAS  Google Scholar 

  • Aziz A, Gauthier A, Bezier A et al (2007) Elicitor and resistance-inducing activities of beta-1,4 cellodextrins in grapevine, comparison with beta-1,3 glucans and alpha-1,4 oligogalacturonides. J Exp Bot 58:1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Bae YS, Knudsen GR (2005) Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol Control 32:236–242

    Article  Google Scholar 

  • Balmer A, Pastor V, Gamir J et al (2015) The prime-ome: towards a holistic approach to priming. Trends Plant Sci 20:443–452

    Article  CAS  PubMed  Google Scholar 

  • Benedetti M, Pontiggia D, Raggi S et al (2015) Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci USA 112:5533–5538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez T, Rincon AM, Limon MC et al (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Bokhari FM (2009) Efficacy of some Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Arch Phytopathol Plant Protect 42:361–369

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotman Y, Briff E, Viterbo A et al (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Phys 147:779–789

    Article  CAS  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A et al (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoza RE, Hermosa R, Vizcaino JA et al (2007) Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Fungal Genet Biol 44:269–283

    Article  CAS  PubMed  Google Scholar 

  • Chacon MR, Rodriguez-Galan O, Benitez T et al (2007) Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Int Microbiol 10:19–27

    CAS  PubMed  Google Scholar 

  • Chang PFL, Xu Y, Narasimhan ML et al (1998) Induction of pathogen resistance and pathogenesis-related genes in tobacco by a heat-stable Trichoderma mycelial extract and plant signal messengers. Physiol Plant 100:341–352

    Article  Google Scholar 

  • Chowdappa P, Kumar SPM, Lakshmi MJ et al (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117

    Article  Google Scholar 

  • Conrath U (2011) Molecular aspects of defense priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJ, Langenbach CJ et al (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E et al (2011) Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C et al (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Phys 149:1579–1592

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Lopez-Bucio JS, Mendez-Bravo A et al (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant-Microbe Interact 28:701–710

    Article  CAS  PubMed  Google Scholar 

  • Dababat AA, Sikora RA, Hauschild R (2006) Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Commun Agric Appl Biol Sci 71:953–961

    CAS  PubMed  Google Scholar 

  • Darago A, Szabo M, Hracs K et al (2013) In vitro investigations on the biological control of Xiphinema index with Trichoderma species. Helminthologia 50:132–137

    Article  Google Scholar 

  • De Coninck B, Timmermans P, Vos C, Cammue B, Kazan K (2015) What lies beneath: belowground defense strategies in plants. Trends Plant Sci 20:91–101

    Article  PubMed  CAS  Google Scholar 

  • De Jaeger N, Declerck S, de la Providencia IE (2010) Mycoparasitism of arbuscular mycorrhizal fungi: a pathway for the entry of saprotrophic fungi into roots. FEMS Microbiol Ecol 73:312–322

    PubMed  Google Scholar 

  • de Lorenzo G, Brutus A, Savatin DV et al (2011) Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Lett 585:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • de Roman M, Fernandez I, Wyatt T et al (2011) Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J Ecol 99:36–45

    Article  CAS  Google Scholar 

  • Dempsey DA, Klessig DF (2012) SOS—too many signals for systemic acquired resistance? Trends Plant Sci 17:538–545

    Article  CAS  PubMed  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ et al (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  CAS  PubMed  Google Scholar 

  • Djonovic S, Vittone G, Mendoza-Herrera A et al (2007) Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6-glucanase genes. Mol Plant Pathol 8:469–480

    Article  CAS  PubMed  Google Scholar 

  • Do Vale LHF, Gomez-Mendoza DP, Kim M-S et al (2012) Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 12:2716–2728

    Article  PubMed  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • El-Nagdi WMA, Abd-El-Khair H (2014) Biological control of Meloidogyne incognita and Fusarium solani in dry common bean in the field. Arch Phytopathol Plant Protect 47:388–397

    Article  CAS  Google Scholar 

  • El-Shennawy MZ, Khalifa EZ, Ammar MM et al (2012) Biological control of the disease complex on potato caused by root-knot nematode and Fusarium wilt fungus. Nematol Mediterr 40:169–172

    Google Scholar 

  • Erbs G, Newman MA (2003) The role of lipopolysaccharides in induction of plant defence responses. Mol Plant Pathol 4:421–425

    Article  CAS  PubMed  Google Scholar 

  • Fauth M, Schweizer A, Buchala C et al (1998) Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors. Plant Physiol 117:1373–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G et al (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaderer R, Lamdan NL, Frischmann A et al (2015) Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol 15:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defense response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230

    Article  Google Scholar 

  • Garnica-Vergara A, Barrera-Ortiz S, Munoz-Parra E et al (2015) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Ibanez S, Rathjen JP (2010) The case for the defense: plants versus Pseudomonas syringae. Microbes Infect 12:428–437

    Article  CAS  PubMed  Google Scholar 

  • Gomes EV, Costa MN, de Paula RG et al (2015) The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Sci Rep 5:17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Gomez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256

    Article  CAS  PubMed  Google Scholar 

  • Gruber S, Vaaje-Kolstad G, Matarese F et al (2011) Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology 21:122–133

    Article  CAS  PubMed  Google Scholar 

  • Gupta SB, Thakur KS, Singh A et al (2005) Exploiting Trichoderma viride for improving performance of chickpea in wilt complex affected area of Chhattisgarh. Adv Plant Sci 18:609–614

    Google Scholar 

  • Gupta KJ, Mur LAJ, Brotman Y (2014) Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Mol Plant Microbe Interact 27:307–314

    Article  CAS  PubMed  Google Scholar 

  • Gust AA, Willmann R, Desaki Y et al (2012) Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 17:495–502

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Paszkowski U (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Heller G, Adomas A, Li G et al (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hermosa R, Belen Rubio M, Cardoza RE et al (2013) The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16:69–80

    CAS  PubMed  Google Scholar 

  • Hermosa R, Cardoza RE, Belen Rubio M et al (2014) Secondary metabolism and antimicrobial metabolites of Trichoderma. In: Gupta VK et al (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 125–137

    Chapter  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD et al (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA et al (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Khan J, Ooka JJ, Miller SA, Madden LV, Hoitink HAJ (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88:280–286

    Article  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lace B, Genre A, Woo S et al (2015) Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride. Environ Microbiol Rep 7:64–77

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Blaylock LA, Endre G et al (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Mondejar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control 56:59–66

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Harman GE et al (2010) Translational research on Trichoderma: from ‘Omics to the Field’. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhang D-D, Dong X-W et al (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126

    Article  CAS  PubMed  Google Scholar 

  • Maehara N, Futai K (2000) Population changes of the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), on fungi growing in pine-branch segments. Appl Entomol Zool 35:413–417

    Article  Google Scholar 

  • Maraun M, Martens H, Migge S et al (2003) Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95

    Article  Google Scholar 

  • Marra R, Ambrosino P, Carbone V et al (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Blanc F, Le Claire E et al (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Phys 127:334–344

    Article  CAS  Google Scholar 

  • Martinez-Medina A, Pascual JA, Lloret E et al (2009) Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. J Sci Food Agricult 89:1843–1850

    Article  CAS  Google Scholar 

  • Martinez-Medina A, Pascual JA, Perez-Alfocea F et al (2010) Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants. Phytopathology 100:682–688

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Medina A, Roldan A, Albacete A et al (2011a) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72:223–229

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Medina A, Roldan A, Pascual JA (2011b) Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: growth response and fusarium wilt biocontrol. Appl Soil Ecol 47:98–105

    Article  Google Scholar 

  • Martinez-Medina A, Fernandez I, Sanchez-Guzman MJ et al (2013) Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Medina A, Alguacil MDM, Pascual JA et al (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815

    Article  CAS  PubMed  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P et al (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Maunoury N, Redondo-Nieto M, Bourcy M et al (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5:e9519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller PM, Anagnostakis S (1977) Suppression of Pratylenchus penetrans and Tylenchorhynchus dubius by Trichoderma viride. J Nematol 9:182–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:73–79

    Article  CAS  PubMed  Google Scholar 

  • Moran-Diez E, Hermosa R, Ambrosino P et al (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Moran-Diez E, Rubio B, Dominguez S et al (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    Article  CAS  PubMed  Google Scholar 

  • Moran-Diez ME, Trushina N, Lamdan NL et al (2015) Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genomics 16:15

    Article  CAS  Google Scholar 

  • Morant M, Bak S, Moller BL et al (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162

    Article  CAS  PubMed  Google Scholar 

  • Moreno CA, Castillo F, Gonzalez A et al (2009) Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol 74:111–120

    Article  CAS  Google Scholar 

  • Mortier V, Holsters M, Goormachtig S (2012) Never too many? How legumes control nodule numbers. Plant Cell Environ 35:245–258

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A et al (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 15:105–129

    Article  CAS  Google Scholar 

  • Olah B, Briere C, Becard G et al (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signaling pathway. Plant J 44:195–207

    Article  CAS  PubMed  Google Scholar 

  • Oyekanmi EO, Coyne DL, Fagade OE et al (2007) Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Protect 26:1006–1012

    Article  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A et al (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perazzolli M, Moretto M, Fontana P et al (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics 13:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S et al (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Razinger J, Lutz M, Schroers HJ et al (2014a) Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots. J Invertebr Pathol 120:59–66

    Article  PubMed  Google Scholar 

  • Razinger J, Lutz M, Schroers HJ et al (2014b) Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies. J Econ Entomol 107:1348–1354

    Article  PubMed  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Saber WIA, El-Hai KMA, Ghoneem KM (2009) Synergistic effect of Trichoderma and Rhizobium on both biocontrol of chocolate spot disease and induction of nodulation, physiological activities and productivity of Vicia faba. Res J Microbiol 4:286–300

    Article  Google Scholar 

  • Sahebani N, Hadavi N (2008) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem 40:2016–2020

    Article  CAS  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE et al (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Samolski I, Rincon AM, Mary Pinzon L et al (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Song L, Lindquist E et al (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 10:567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seidl-Seiboth V, Zach S, Frischmann A et al (2013) Spore germination of Trichoderma atroviride is inhibited by its LysM protein TAL6. FEBS J 280:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Selim ME, Mahdy ME, Sorial ME et al (2014) Biological and chemical dependent systemic resistance and their significance for the control of root-knot nematodes. Nematology 8:1–11

    Google Scholar 

  • Sharon E, Chet I, Viterbo A et al (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–258

    Article  Google Scholar 

  • Sharon E, Chet I, Spiegel Y (2009) Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. Eur J Plant Pathol 123:291–299

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 38:169–175

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Scopa A, Manfra M et al (2011) Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regul 65:421–425

    Article  CAS  Google Scholar 

  • Soto MJ, Dominguez-Ferreras A, Perez-Mendoza D et al (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong XN (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, McAlvin CB, Kim S-Y et al (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Phys 141:1473–1481

    Article  CAS  Google Scholar 

  • Szabo M, Csepregi K, Galber M et al (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63:121–128

    Article  Google Scholar 

  • Szabo M, Urban P, Viranyi F et al (2013) Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism. Biol Control 67:337–343

    Article  CAS  Google Scholar 

  • Tariq Javeed M, Al-Hazmi AS (2015) Effect of Trichoderma harzianum on Meloidogyne javanica in tomatoes as influenced by time of the fungus introduction into soil. J Pure Appl Microbiol 9:535–539

    Google Scholar 

  • Tellstroem V, Usadel B, Thimm O et al (2007) The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Phys 143:825–837

    Article  CAS  Google Scholar 

  • van den Burg HA, Harrison SJ, Joosten MHAJ et al (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19:1420–1430

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Spronsen PC, Tak T, Rood AMM et al (2003) Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol Plant Microbe Interact 16:83–91

    Article  PubMed  Google Scholar 

  • Velazquez-Robledo R, Contreras-Cornejo HA, Macias-Rodriguez L et al (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant Microbe Interact 24:1459–1471

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T et al (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 307–320

    Chapter  Google Scholar 

  • Vinale F, Marra R, Scala F et al (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158

    CAS  PubMed  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y et al (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Landau U, Kim S et al (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Vos C, Yang Y, De Coninck B, Cammue BPA (2014) Fungal (-like) biocontrol organisms in tomato disease control. Biol Control 74:64–81

    Article  Google Scholar 

  • Vos CM, De Cremer K, Cammue B et al (2015) The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol 16:400–412

    Article  PubMed  Google Scholar 

  • Woo SL, Scala F, Ruocco M et al (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

    Article  CAS  PubMed  Google Scholar 

  • Wyss P, Boller T, Wiemken A (1992) Testing the effect of biological-control agents on the formation of vesicular arbuscular mycorrhiza. Plant Soil 147:159–162

    Article  Google Scholar 

  • Yano A, Suzuki K, Uchimiya H et al (1998) Induction of hypersensitive cell death by a fungal protein in cultures of tobacco cells. Mol Plant-Microbe Interact 11:115–123

    Article  CAS  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y et al (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gan Y, Xu B et al (2014) The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biol Control 72:1–8

    Article  Google Scholar 

  • Zhang S, Gan Y, Xu B (2015) Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. Appl Soil Ecol 94:21–29

    Article  Google Scholar 

Download references

Acknowledgments

AMM gratefully acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (FZT 118). CV is funded by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (PIOF-GA-2013-625551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. F. Vos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinez-Medina, A., Pozo, M.J., Cammue, B.P.A., Vos, C.M.F. (2016). Belowground Defence Strategies in Plants: The Plant–Trichoderma Dialogue. In: Vos, C., Kazan, K. (eds) Belowground Defence Strategies in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-42319-7_13

Download citation

Publish with us

Policies and ethics