Skip to main content

Hodge and the Harmonic Forms

  • Chapter
  • First Online:
  • 2198 Accesses

Part of the book series: Lecture Notes in Mathematics ((HISTORYMS,volume 2162))

Abstract

Recall that Riemann used closed paths on his surfaces in order to integrate smooth forms of degree 1 along them. In fact, Riemann did not work with arbitrary such forms, but rather with those which may be written as f(z)dz in terms of a local holomorphic coordinate z, the function f(z) being also holomorphic.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In modern terms, a Riemannian metric on the smooth manifold V is a smooth field of positive definite quadratic forms on the tangent spaces of V at its various points. At that time, the notion of fiber bundle was just emerging (see Chap. 46), and a Riemannian metric was viewed instead in local coordinates (x i) i as an expression i, j g ij dx i dx j, the multiplication of differentials being commutative, the coefficients g ij being smooth as functions of the variables x i, symmetric, that is, g ij  = g ji , and the symmetric matrix (g ij ) i, j being positive definite for all values of the parameters x i.

  2. 2.

    A Kähler metric on a complex manifold is a Riemannian metric g such that the exterior form of degree 2 defined by ω(X, Y ): = g(X, iY ) (where X, Y are any two tangent vectors to the same point) is closed.

  3. 3.

    This is a consequence of the Riemann–Roch Theorem 16.3, as we explained in Chap. 16

References

  1. W.P. Barth, K. Hulek, C.A.M. Peters, A. Van de Ven, Compact Complex Surfaces, 2nd Enlarged edn. (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  2. A.L. Cauchy, Considérations nouvelles sur les intégrales définies qui s’étendent à tous les points d’une courbe fermée, et sur celles qui sont prises entre des limites imaginaires. C.R. Acad. Sci. Paris 23, 689–702 (1846).

    Google Scholar 

  3. G. de Rham, Quelques souvenirs des années 1925–1950. Cahiers du séminaire d’histoire des mathématiques, vol. 1 (Université Pierre et Marie Curie, Paris, 1980), pp. 19–36. Republished in Œuvres Mathématiques de Georges de Rham (L’Ens. Math., Univ. de Genève, 1981), pp. 651–668

    Google Scholar 

  4. W.V.D. Hodge, The Theory and Applications of Harmonic Integrals (Cambridge University Press, Cambridge, 1941)

    MATH  Google Scholar 

  5. W.V.D. Hodge, The topological invariants of algebraic varieties, in Proceedings of the International Congress of Mathematicians (American Mathematical Society, Providence, RI, 1950), pp. 182–192

    Google Scholar 

  6. E. Kähler, Über eine bemerkenswerte Hermitesche Metrik. Abh. Math. Sem. Univ. Hamburg 9 (1), 173–186 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  7. I.R. Shafarevich, Basic Algebraic Geometry, vol. 2. Schemes and Complex Manifolds 2nd edn. (Springer, New York, 1994)

    Google Scholar 

  8. P. Swinnerton-Dyer, An outline of Hodge theory, in Algebraic Geometry. Oslo 1970 (Proceedings of the Fifth Nordic Summer School in Mathematics) (Wolters-Noordhoff, Groningen, 1972), pp. 277–286

    Google Scholar 

  9. C. Voisin, Hodge Theory and Complex Algebraic Geometry. I., II. Cambridge Studies in Advanced Mathematics, vol. 76 (Cambridge University Press, Cambridge, 2002). Translation from the French by Leila Schneps

    Google Scholar 

  10. A. Weil, Comments on the article “Sur la théorie des formes différentielles attachées à une variété analytique complexe”, in Œuvres scientifiques I (Springer, New York, 1979), pp. 562–564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popescu-Pampu, P. (2016). Hodge and the Harmonic Forms. In: What is the Genus?. Lecture Notes in Mathematics(), vol 2162. Springer, Cham. https://doi.org/10.1007/978-3-319-42312-8_42

Download citation

Publish with us

Policies and ethics