Skip to main content

AXIOM: A Flexible Platform for the Smart Home

  • Chapter
  • First Online:
Components and Services for IoT Platforms

Abstract

The AXIOM hardware/software platform aims at bringing easy programmability on top of a cluster of processors by using a fast interconnect and FPGA as a basis for building a scalable embedded system. The Smart Home is one of the key scenarios in which AXIOM could be useful for the Internet-of-Things (IoT). In Smart Homes, everything is linked to the flow of information that from the “on the field” devices needs to arrive to the cloud servers. The information sensed in the environment will not be transmitted as is to the higher layers, but is somehow interpreted to provide a synthetic light-weight representation of the environment. In such a scenario, it is then clear that there is a need for peripheral nodes as well as intermediate gateways which needs to be able to perform high-performance computational loads. AXIOM provides the possibility of designing a cluster of low-power/low-budget boards, which could be packed inside a “high-performance embedded low-cost product.” The AXIOM boards are heterogeneous, thus allowing for even greater diversity which is needed in those kind of IoT scenarios. The cluster itself can then be integrated inside the IoT architectures as “computational-power node,” which could be the center of a distributed intelligence near the edges of the IoT network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source to HDL Xilinx tool.

References

  1. W. Ahmed, M. Shafique, L. Bauer, J. Karlsruhe, Adaptive resource management for simultaneous multitasking in mixed-grained reconfigurable multi-core processors, in 2011 Proceedings of the 9th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 365–374 (2011)

    Google Scholar 

  2. C. Alvarez et al., The AXIOM software layers, in Digital System Design (DSD) (2015)

    Google Scholar 

  3. E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, D. Ortega, COTSon: infrastructure for full system simulation. SIGOPS Oper. Syst. Rev. 43 (1), 52–61 (2009). doi:http://doi.acm.org/10.1145/1496909.1496921

  4. E. Ayguade, R.M. Badia, D. Cabrera, A. Duran, M. Gonzalez, F. Igual, D. Jimenez, J. Labarta, X. Martorell, R. Mayo, J.M. Perez, E.S. Quintana-Orti, A proposal to extend the openmp tasking model for heterogeneous architectures, in International Workshop on OpenMP (IWOMP), vol. 5568, pp. 154–167 (2009)

    Google Scholar 

  5. M. Banzi, Getting Started with Arduino (Make Books - Imprint of: O’Reilly Media, Sebastopol, CA, 2008)

    Google Scholar 

  6. J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. Badia, E. Ayguade, J. Labarta, Productive cluster programming with OmpSs, in Euro-Par 2011 Parallel Processing, pp. 555–566 (2011)

    Google Scholar 

  7. J. Clemente, V. Rana, D. Sciuto, I. Beretta, D. Atienza, A hybrid mapping-scheduling technique for dynamically reconfigurable hardware, in 2011 International Conference on Field Programmable Logic and Applications (FPL), pp. 177–180 (2011). doi:10.1109/FPL.2011.40

    Google Scholar 

  8. D.J. Cook, A.S. Crandall, B.L. Thomas, N.C. Krishnan, CASAS: a smart home in a box. Computer 46 (7), 62–69 (2013). doi:http://doi.ieeecomputersociety.org/10.1109/MC.2012.328

  9. R. Ferrer, S. Royuela, D. Caballero, A. Duran, X. Martorell, E. Ayguade, Mercurium: Design decisions for a S2S compiler, in Proceedings of the Cetus Users and Compiler Infrastructure Workshop in conjunction with PACT (2011)

    Google Scholar 

  10. R. Giorgi, Accelerating haskell on a dataflow architecture: a case study including transactional memory, in Computer Engineering and Applications (CEA), pp. 91–100 (2015)

    Google Scholar 

  11. R. Giorgi, Scalable embedded systems: towards the convergence of high-performance and embedded computing, in Proceedings of the 13th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC 2015) (2015)

    Google Scholar 

  12. R. Giorgi, P. Faraboschi, An introduction to DF-Threads and their execution model, in IEEE MPP, pp. 60–65 (2014). doi:10.1109/SBAC-PADW.2014.30

    Google Scholar 

  13. R. Giorgi, A. Scionti, A scalable thread scheduling co-processor based on data-flow principles. ELSEVIER Futur. Gener. Comput. Syst. 53, 100–108 (2015). doi:10.1016/j.future. 2014.12.014. http://www.sciencedirect.com/science/article/pii/S0167739X1400274X

    Article  Google Scholar 

  14. R. Giorgi et al., TERAFLUX: harnessing dataflow in next generation teradevices. Microprocess. Microsyst. 38 (8, Part B), 976–990 (2014)

    Google Scholar 

  15. M. Herlihy, J.E.B. Moss, Transactional memory: architectural support for lock-free data structures, in Proceedings of the 20th Annual International Symposium on Computer Architecture, ISCA ’93 (ACM, New York, 1993), pp. 289–300. doi:10.1145/165123.165164

    Google Scholar 

  16. Intel: Could Smart Homes Be as Commonplace as Smartphones by 2025. http://download.intel.com/newsroom/kits/iot/pdfs/IntelSmartHomeSurveyBackgrounder.pdf. Last accessed on Feb 2016

  17. N. Komninos, E. Philippou, A. Pitsillides, Survey in smart grid and smart home security: issues, challenges and countermeasures. IEEE Commun. Surv. Tutor. 16 (4), 1933–1954 (2014). doi:10.1109/COMST.2014.2320093

    Article  Google Scholar 

  18. S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou, D. Tsaliagkos, M. Katevenis, D. Pnevmatikatos, D. Nikolopoulos, Formic: cost-efficient and scalable prototyping of manycore architectures, in 2012 IEEE 20th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) (IEEE, New York, 2012), pp. 61–64

    Book  Google Scholar 

  19. E. Palazzetti, Getting Started with UDOO (Packt Publishing, Birmingham, 2015)

    Google Scholar 

  20. V. Pillet, J. Labarta, T. Cortes, S. Girona, PARAVER: a tool to visualise and analyze parallel code, in Proceedings of WoTUG-18: Transputer and Occam Developments (1995)

    Google Scholar 

  21. N. Puzovic, S. McKee, R. Eres, A. Zaks, P. Gai, S. Wong, R. Giorgi, A multi-pronged approach to benchmark characterization, in IEEE CLUSTER, pp. 1–4 (2010). doi:10.1109/ CLUSTERWKSP.2010.5613090

    Google Scholar 

  22. S. Ray, Y. Jin, A. Raychowdhury, The changing computing paradigm with internet of things: a tutorial introduction. IEEE Des. Test 33 (2), 76–96 (2016). doi:10.1109/MDAT.2016.2526612

    Article  Google Scholar 

  23. A. Scionti, S. Kavvadias, R. Giorgi, Dynamic power reduction in self-adaptive embedded systems through benchmark analysis, in IEEE Mediterranean Conference on Embedded Computing (MECO), pp. 62–65 (2014)

    Google Scholar 

  24. D. Theodoropoulos et al., The AXIOM project (agile, extensible, fast I/O module), in SAMOS (2015)

    Google Scholar 

  25. O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I.S. Jubert, M. Mazura, M. Harrison et al. Internet of things strategic research roadmap, in Internet of Things-Global Technological and Societal Trends, pp. 9–52 (2011)

    Google Scholar 

  26. S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson, R. Giorgi, T. Ungerer, A fault detection and recovery architecture for a teradevice dataflow system, in, IEEE Design for Manufacturability (DFM), pp. 38–44 (2011)

    Google Scholar 

  27. S. Weis et al., Architectural support for fault tolerance in a teradevice dataflow system. Springer Int. J. Parallel Prog. 44 (2), 208–232 (2016)

    Article  MathSciNet  Google Scholar 

  28. Xilinx Inc.: Xilinx UltraScale Architecture, http://www.xilinx.com/support/documentation/white_papers/wp435-Xilinx-UltraScale.pdf. Last accessed on Feb 2016

  29. Xilinx Inc.: Zynq Series, http://www.xilinx.com/content/xilinx/en/products/silicon-devices/soc/zynq-7000.html. Last accessed on Feb 2016

Download references

Acknowledgements

We thankfully acknowledge the support of the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496), the Spanish Government, through the Severo Ochoa program (grant SEV-2011-00067) the Spanish Ministry of Science and Technology (TIN2012-34557), and the Generalitat de Catalunya (MPEXPAR, 2014-SGR-1051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Giorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giorgi, R., Bettin, N., Gai, P., Martorell, X., Rizzo, A. (2017). AXIOM: A Flexible Platform for the Smart Home. In: Keramidas, G., Voros, N., Hübner, M. (eds) Components and Services for IoT Platforms. Springer, Cham. https://doi.org/10.1007/978-3-319-42304-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42304-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42302-9

  • Online ISBN: 978-3-319-42304-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics