Skip to main content

Power-Shaping Configurable Microprocessors for IoT Devices

  • Chapter
  • First Online:
Components and Services for IoT Platforms

Abstract

The “Internet of Things” implies a pervasive diffusion of “IoT processors”: small mixed-signal ICs, containing specific sensing/actuating logic coupled to embedded microprocessor core(s) for control, communication, and information processing. IoT processors must be small, low cost, low power, and highly reliable in order to be embedded in remote, often inaccessible locations. Most of all, they must sustain time-varying computation loads, dictated by real time events in the environment they are embedded in. This chapter introduces design strategies for “Power-Shaping Microprocessor Systems”: with relatively limited design overhead, processor systems can be composed by independent, asynchronous clock, voltage and substrate bias islands. Depending on the relative workload of each section, each component in the processor system can be dynamically tuned to the smallest consumption level that still meets real time specification. Such option offers performance boost in the range of 30 %, and decrease in power consumption in the range of 70 %, with area overheads in the range of 5–10 % depending on the design environment. It also enables a mitigation of a rough factor of 5 in current peaks/gradients on the supply lines of each IC. This result is highly relevant, since current gradients are a significant cause of unreliability on CMOS circuits, especially in mixed analog/digital environments such as IoT processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bolla, R. Bruschi, F. Davoli, F. Cucchietti, Energy efficiency in the future internet: a survey of existing approaches and trends in energy aware fixed network infrastructures. IEEE Commun. Surv. Tutor. 13, 223–244 (2011)

    Article  Google Scholar 

  2. A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  3. A. Manuzzato, F. Campi; V. Liberali, D. Pandini, Design methodology for low-power embedded microprocessors. 23rd International workshop on power and timing modeling, optimization and simulation (PATMOS), 2013, pp. 259–264. doi:10.1109/PATMOS.2013.6662187

  4. E. Rodriguez-Diaz, J.C. Vasquez, J.M. Guerrero, Intelligent DC homes in future sustainable energy systems: when efficiency and intelligence work together. IEEE Consum. Electron. Mag. 5(1), 74–80 (2016). doi:10.1109/MCE.2015.2484699

    Article  Google Scholar 

  5. G. Gielen, P. De Wit, E. Maricau et~al., Emerging yield and reliability challenges in nanometer CMOS technologies. Proceedings of the IEEE symposium on design and test in Europe (2008)

    Google Scholar 

  6. E. Maricau, G. Gielen, Analog IC Reliability in Nanometer CMOS (Springer, New York, 2013)

    Book  Google Scholar 

  7. D. Draper et~al., Signal and power integrity for SoCs. 2010 IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp. 520–520. doi:10.1109/ISSCC.2010.5433856

  8. Synopsys Design Ware FIFO, www.synopsys.com/products/designware/docs/doc/dwf/datasheets/dw\_fifo\_s2\_sf.pd

    Google Scholar 

  9. C. Cummings, Simulation and synthesis techniques for asynchronous FIFO design. Synopsys users group conference (SNUG), San Jose, CA, 2002

    Google Scholar 

  10. A. Wang, A.P. Chandrakasan, S.V. Kosonocky, Optimal supply and threshold scaling for subthreshold CMOS circuits. Proc. ISVLSI, Apr 2002, pp. 5–9

    Google Scholar 

  11. M. Krstic, E. Grass, F.K. Gurkaynak, P. Vivet, Globally asynchronous, locally synchronous circuits: overview and outlook. IEEE Des. Test Comput. 24(5), 430–441 (2007). doi:10.1109/MDT.2007.164

    Article  Google Scholar 

  12. D. Rossi, F. Campi, S. Spolzino, S. Pucillo, R. Guerrieri, A heterogeneous digital signal processor for dynamically reconfigurable computing. IEEE J. Solid State Circuits 45(8), 1615–1626 (2010). doi:10.1109/JSSC.2010.2048149

    Article  Google Scholar 

  13. J.W. Tschanz, S.G. Narendra, Y. Ye, B.A. Bloechel, S. Borkar, V. De, Dynamic sleep transistor and body bias for active leakage power control of microprocessors. IEEE J. Solid State Circuits 38, 1838–1845 (2003)

    Article  Google Scholar 

  14. D.N. Truong, W.H. Cheng, T. Mohsenin, Z. Yu, A.T. Jacobson, G. Landge, M.J. Meeuwsen, C. Watnik, A.T. Tran, Z. Xiao, E.W. Work, J.W. Webb, P.V. Mejia, B.M. Baas, A 167-processor computational platform in 65 nm CMOS. IEEE J. Solid State Circuits 44(4), 1130–1144 (2009). doi:10.1109/JSSC.2009.2013772

    Article  Google Scholar 

  15. R. Airoldi, F. Garzia, J. Nurmi, Improving reconfigurable hardware energy efficiency and robustness via DVFS-scaled homogeneous MP-SoC. 2011 IEEE international symposium on parallel and distributed processing workshops and PhD forum (IPDPSW), 2011, pp. 286–289. doi:10.1109/IPDPS.2011.160

  16. S.M. Martin, K. Flautner, T. Mudge, D. Blaauw, Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads. Proc. ICCAD, Nov 2002, pp. 721–725

    Google Scholar 

  17. A. Manuzzato, F. Campi, D. Rossi, V. Liberali, D. Pandiniin, Exploiting body biasing for leakage reduction: a case study. Proc. ISVLSI, Aug 2013

    Google Scholar 

  18. N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir, V. Narayanan, Leakage current: Moore’s law meets static power. IEEE Trans. Comput. 36(12), 68–75 (2003). doi:10.1109/MC.2003.1250885

    Google Scholar 

  19. A. Vassighi, M. Sachdev, Thermal and Power Management of Integrated Circuits (Springer, Berlin, 2006). ISBN 978-0-387-25762-4

    Google Scholar 

  20. D. Jacquet et~al., A 3 GHz Dual Core Processor ARM CortexTM-A9 in 28 nm UTBB FD-SOI CMOS with ultra-wide voltage range and energy efficiency optimization. IEEE J. Solid State Circuits 49(4), 812–826 (2014)

    Google Scholar 

  21. F. Arnaud, N. Planes, O. Weber, V. Barral, S. Haendler, P. Flatresse, F. Nyer, Switching energy efficiency optimization for advanced CPU thanks to UTBB technology. IEEE int. electron devices meeting (IEDM), Dig., 2012

    Google Scholar 

  22. R.C. Johnson, FinFETs + FD-SOI Proposition: May Save Power, http://www.eetimes.com/document.asp?doc_id=1327035. Accessed Feb 2016

  23. T. Matsukawa et~al., Lowest variability SOI FinFETs having multiple Vt by back-biasing. 2014 Symposium on VLSI technology (VLSI-technology): digest of technical papers. doi:10.1109/VLSIT.2014.6894393

    Google Scholar 

  24. FD-SOI technology innovations extend Moore’s law. A GlobalFoundries white paper, September 2015, http://globalfoundries.com/docs/default-source/brochures-and-white-papers/globalfoundries_fd-soi_wp_sep2015.pdf. Accessed Feb 2016

  25. C. Brunelli, F. Campi, J. Kylliainen, J. Nurmi, A reconfigurable FPU as IP component for SoCs. Proceedings of 2004 international symposium on system-on-chip, 2004, pp. 103–106. doi:10.1109/ISSOC.2004.1411160

  26. AMBA AXI and ACE protocol specification. ARM, http://infocenter.arm.com

  27. M. Coppola, M. Grammatikakis, R. Locatelli, Design of Cost-Efficient Interconnect Processing Units: Spidergon STNoC (CRC Press, Boca Raton, FL, 2008)

    Book  Google Scholar 

  28. A.J. Martin, M. Nystrom, Asynchronous techniques for system-on-chip design. Proc. IEEE 94(6), 1089–1120 (2006). doi:10.1109/JPROC.2006.875789

    Article  Google Scholar 

  29. Keshavarzi et~al., Technology scaling behavior of optimum reverse body bias for standby leakage power reduction in CMOS IC’s. ISLPED, 1999, p. 252

    Google Scholar 

  30. N. Planes et~al., 28 nm FD-SOI technology platform for high-speed low-voltage digital applications. Proc. symp. VLSI technology (VLSIT), 2012

    Google Scholar 

  31. Best-in-class standard-cell libraries for high-performance, low-power and high-density SoC design in 28nm FD-SOI technology. STMicroelectronics white paper, 2015, http://www.st.com/web/en/resource/sales_and_marketing/presentation/technology_presentation/Standard_Cell_White_Paper_20150928.pdf. Accessed Feb 2016

  32. F. Campi, R. Canegallo, R. Guerrieri, IP-reusable 32-bit VLIW RISC core. Proceedings of the 27th European solid-state circuits conference (ESSCIRC 2001), 2001, pp. 445–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Campi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campi, F. (2017). Power-Shaping Configurable Microprocessors for IoT Devices. In: Keramidas, G., Voros, N., Hübner, M. (eds) Components and Services for IoT Platforms. Springer, Cham. https://doi.org/10.1007/978-3-319-42304-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42304-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42302-9

  • Online ISBN: 978-3-319-42304-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics