Skip to main content

A Compressed Sensing Based Feature Extraction Method for Identifying Characteristic Genes

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9772))

Included in the following conference series:

  • 1847 Accesses

Abstract

In current molecular biology, it becomes more and more important to identify characteristic genes closely correlated with a key biological process from gene expression data. In this paper, a novel compressed sensing (CS) based feature extraction method named CSGS is proposed to identify the characteristic genes. Considering the transposed gene expression matrix and class labels as sensing matrix and measurement vector, respectively, CS reconstruction is implemented by basis pursuit algorithm. Top ranking genes with high signal weights are retained as the characteristic genes. Experiments of CSGS are performed on leukemia data set and compared with other sparse methods. Results demonstrate that CSGS is effective in identifying characteristic genes, and is not sensitive to parameters. CSGS could offer a simple way for feature extraction and provide more clues for biologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics. 10(3), 515–534 (2009)

    Article  Google Scholar 

  2. Liu, J.X., Zheng, C.H., Xu, Y.: Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition. Comput. Biol. Med. 42(5), 582–589 (2012)

    Article  Google Scholar 

  3. Liu, J.-X., Gao, Y.-L., Xu, Y., Zheng, C.-H., You, J.: Differential expression analysis on RNA-Seq count data based on penalized matrix decomposition. IEEE Trans. Nanobiosci. 13(1), 12–18 (2014)

    Article  Google Scholar 

  4. Luss, R., d’Aspremont, A.: Clustering and feature selection using sparse principal component analysis. Opt. Eng. 11(1), 145–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baraniuk, R.G.: Compressive sensing. IEEE Sign. Process. Mag. 24(4), 118–120, 124 (2007)

    Google Scholar 

  6. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theor. 56(4), 1982–2001 (2010)

    Article  MathSciNet  Google Scholar 

  7. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Trocan, M., Tramel, E.W., Fowler, J.E., Pesquet, B.: Compressed-sensing recovery of multiview image and video sequences using signal prediction. Multimedia Tools Appl. 72(1), 95–121 (2014)

    Article  Google Scholar 

  9. Gholami, A., Siahkoohi, H.: Regularization of linear and non-linear geophysical Ill-posed problems with joint sparsity constraints. Geophys. J. Int. 180(2), 871–882 (2010)

    Article  Google Scholar 

  10. Ho, C.M., Hsu, S.D.: Determination of Nonlinear Genetic Architecture Using Compressed Sensing (2014). arXiv preprint arXiv:14086583

  11. Vattikuti, S., Lee, J.J., Chang, C.C., Hsu, S.D., Chow, C.C.: Applying compressed sensing to genome-wide association studies. GigaScience 3(1), 10 (2014)

    Article  Google Scholar 

  12. Tang, W., Cao, H., Zhang, J.G., Duan, J., Lin, D., Wang, Y.P.: Subtyping of Gliomaby combining gene expression and CNVs data based on a compressive sensing approach. Adv. Genet. Eng. 1, 101 (2012)

    Article  Google Scholar 

  13. Li, S., Shang, J., Chen, Q., Sun, Y., Liu, J.-X.: A compressed sensing based two-stage method for detecting epistatic interactions. Int. J. Data Min. Bioinf. 14(4), 354–372 (2016)

    Article  Google Scholar 

  14. Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Sign. Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  Google Scholar 

  15. Huang, H., Misra, S., Tang, W., Barani, H., Al-Azzawi, H.: Applications of Compressed Sensing in Communications Networks (2013). arXiv preprint arXiv:13053002

  16. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. SPGL1: A Solver for Large-Scale Sparse Reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1

  18. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., Harter, K.: The Atgenexpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50(2), 347–363 (2007)

    Article  Google Scholar 

  19. Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Brunet, J.-P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. 101(12), 4164–4169 (2004)

    Article  Google Scholar 

  21. Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37(suppl 2), W305–W311 (2009)

    Article  Google Scholar 

  22. Wu, M.-Y., Dai, D.-Q., Zhang, X.-F., Zhu, Y.: Cancer subtype discovery and biomarker identification via a new robust network clustering algorithm (2013). http://dx.doi.org/10.1371/journal.pone.0066256

  23. Nakazato, T., Sagawa, M., Yamato, K., Xian, M., Yamamoto, T., Suematsu, M., Ikeda, Y., Kizaki, M.: Myeloperoxidase is a key regulator of oxidative stress-mediated apoptosis in myeloid leukemic cells. Clin. Cancer Res. 13(18), 5436–5445 (2007)

    Article  Google Scholar 

  24. Dunna, N.R., Vuree, S., Kagita, S., Surekha, D., Digumarti, R., Rajappa, S., Satti, V.: Association of GSTP1 gene (I105v) polymorphism with acute leukaemia. J. Genet. 91, 1–4 (2012)

    Article  Google Scholar 

  25. Korošec, B., Glavač, D., Volavšek, M., Ravnik-Glavač, M.: ATP2A3 gene is involved in cancer susceptibility. Cancer Genet. Cytogenet. 188(2), 88–94 (2009)

    Article  Google Scholar 

  26. Delaunay, J., Lecomte, N., Bourcier, S., Qi, J., Gadhoum, Z., Durand, L., Chomienne, C., Robert-Lezenes, J., Smadja-Joffe, F.: Contribution of GM-CSF and IL-8 to the CD44-induced differentiation of acute monoblastic leukemia. Leukemia 22(4), 873–876 (2008)

    Article  Google Scholar 

  27. Joslin, J.M., Fernald, A.A., Tennant, T.R., Davis, E.M., Kogan, S.C., Anastasi, J., Crispino, J.D., Le Beau, M.M.: Haploinsufficiency of EGR1, a candidate gene in the del (5q), leads to the development of myeloid disorders. Blood 110(2), 719–726 (2007)

    Article  Google Scholar 

  28. Li, Z., Zhang, X., Yang, Y., Yang, S., Dong, Z., Du, L., Wang, L., Wang, C.: Periostin expression and its prognostic value for colorectal cancer. Int. J. Mol. Sci. 16(6), 12108–12118 (2015)

    Article  Google Scholar 

  29. Ågesen, T., Berg, M., Clancy, T., Thiis-Evensen, E., Cekaite, L., Lind, G., Nesland, J., Bakka, A., Mala, T., Hauss, H.: CLC and IFNAR1 are differentially expressed and a global immunity score is distinct between early-and late-onset colorectal cancer. Genes Immun. 12(8), 653–662 (2011)

    Article  Google Scholar 

  30. Mostert, B., Sieuwerts, A.M., Vries, J.B., Kraan, J., Lalmahomed, Z., van Galen, A., van der Spoel, P., de Weerd, V., Ramírez-Moreno, R., Smid, M.: mRNA expression profiles in circulating tumor cells of metastatic colorectal cancer patients. Mol. Oncol. 9(4), 920–932 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.61502272, 61572284, 61572283); the Award Foundation Project of Excellent Young Scientists in Shandong Province (BS2014DX004, BS2014DX005); Project of Shandong Province Higher Educational Science and Technology Program (J13LN31); Scientific Research Foundation of Qufu Normal University(XJ201226); the Science and Technology Planning Project of Qufu Normal University (xkj201524); the Elaborate Experiment Project of Qufu Normal University (jp2015005) and the Innovation and Entrepreneurship Training Project for College Students of Qufu Normal University (2015A059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, SJ., Shang, J., Liu, JX., Li, H. (2016). A Compressed Sensing Based Feature Extraction Method for Identifying Characteristic Genes. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9772. Springer, Cham. https://doi.org/10.1007/978-3-319-42294-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42294-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42293-0

  • Online ISBN: 978-3-319-42294-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics