Tempo-Spatial Compactness Based Background Subtraction for Vehicle Detection and Tracking

  • Zubair IftikharEmail author
  • Prashan Premaratne
  • Peter Vial
  • Shuai Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)


Background modelling techniques use the time, spatial, intensity and image plane information to detect the objects. These features are integrated to extract the maximum information. The utilization of background techniques are mostly dependent on various parameters that can be learning rate or threshold. High dependency on parameters increase the complexity and make it difficult to control in changing weather conditions. Parameters based techniques do not provide the high efficiency in outdoor computer vision applications where illumination conditions are difficult to predict. This paper presents an algorithm that is based on background modelling with less dependency on parameters and robust to illumination changes. Camera jitter causes the major effect in modelling techniques so camera jitter is also addressed. A new way of separation of shadow from object is also implemented. Performance of the algorithm is compared with other state-of-the-art methods.


Background modelling Illumination conditions Camera jitter 


  1. 1.
    Kanhere, N.K., Pundlik, S.J., Birchfield, S.T.: Vehicle segmentation and tracking from a low-angle off-axis camera. In: Proceeding IEEE Conference Computer Vision Pattern Recognition, vol. 2, pp. 1152–1157 (2005)Google Scholar
  2. 2.
    Pang, C.C.C., Lam, W.W.L., Yung, N.H.C.: A method for vehicle count in the presence of multiple-vehicle occlusions in traffic images. IEEE Trans. Intell. Trans. Syst. 8(3), 441–459 (2007)CrossRefGoogle Scholar
  3. 3.
    Premaratne, P., Ajaz, S., Premaratne, M.: Hand gesture tracking and recognition system for control of consumer electronics. In: Huang, D.-S., Gan, Y., Gupta, P., Gromiha, M. (eds.) ICIC 2011. LNCS (LNAI), vol. 6839, pp. 588–593. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Premaratne, P., Nguyen, Q., Premaratne, M.: Human computer interaction using hand gestures. In: Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.) ICIC 2010. CCIS, vol. 93, pp. 381–386. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Premaratne, P., Safaei, F., Nguyen, Q.: Moment invariant based control system using hand gestures. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCIS, vol. 345, pp. 322–333. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Premaratne, P., Premaratne, M.: Image Matching using Moment Invariants. Neurocomputing 137, 65–70 (2014)CrossRefGoogle Scholar
  7. 7.
    Premaratne, P., Ajaz, S., Premaratne, M.: Hand gesture tracking and recognition system using Lucas-Kanade algorithm for control of consumer electronics. Neurocomputing 116(20), 242–249 (2013)CrossRefGoogle Scholar
  8. 8.
    Premaratne, P., Nguyen, Q.: Consumer electronics control system based on hand gesture moment invariants. IET Comput. Vis. 1, 35–41 (2007)CrossRefGoogle Scholar
  9. 9.
    Yang, S., Premaratne, P., Vial, P.: Hand gesture recognition: an overview. In: 5th IEEE International Conference on Broadband Network and Multimedia Technology (2013)Google Scholar
  10. 10.
    Zou, Z., Premaratne, P., Premaratne, M., Monaragala, R., Bandara, N.: Dynamic hand gesture recognition system using moment invariants. In: ICIAfS, IEEE Computational Intelligence Society, Colombo, Sri Lanka, pp. 108-113 (2010)Google Scholar
  11. 11.
    Herath, D.C., Kroos, C., Stevens, C.J., Cavedon, L., Premaratne, P.: Thinking head: towards human centred robotic. In: 2010 11th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, pp. 2042–2047 (2010)Google Scholar
  12. 12.
    Minge, E.: Evaluation of Non-intrusive Technologies for Traffic Detection. Minnesota Department of Transportation, Office of Policy Analysis, Research and Innovation, SRF Consulting Group, US Department of Transportation, Federal Highway Administration (2010)Google Scholar
  13. 13.
    Morris, B., Trivedi, M.: Robust classification and tracking of vehicles in traffic video streams. In: IEEE Conference Intelligent Transportation Systems, pp. 1078–1083 (2006)Google Scholar
  14. 14.
    Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21, 359–381 (2003)CrossRefGoogle Scholar
  15. 15.
    Buch, N., Velastin, S., Orwell, J.: A review of computer vision techniques for the analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 12, 920–939 (2011)CrossRefGoogle Scholar
  16. 16.
    Mandellos, N.A., Keramitsoglou, I., Kiranoudis, C.T.: A background subtraction algorithm for detecting and tracking vehicle. Expert Syst. Appl. 38, 1619–1631 (2011)CrossRefGoogle Scholar
  17. 17.
    Lima Azevedo, C., Cardoso, J., Ben-Akiva, M., Costeira, J.P., Marques, M.: Automatic vehicle trajectory extraction by aerial remote sensing. Presented at the 16th Euro Working Group Transportation, Procedia Soc. Behav. Sci., Porto, Portugal (2013)Google Scholar
  18. 18.
    Sánchez, A., Nunes, E., Conci, A.: Using adaptive background subtraction into a multilevel model for traffic surveillance. Integr. Comput. Aided Eng. 19(3), 239–256 (2012)Google Scholar
  19. 19.
    Unzueta, L., et al.: Adaptive multicue background subtraction for robust vehicle counting and classification. IEEE Trans. Intell. Transp. Syst. 13(2), 527–540 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, Y., Jodoin, P.-M., Fatih, P., Janusz, K., Yannick, B., Prakash, I.: Change Detection 2014 Benchmark (2014).
  21. 21.
    Varadarajan, S., Wang, H., Miller, P., Zhou, H.: Fast convergence of regularised region-based mixture of Gaussians for dynamic background modelling. Comput. Vis. Imaging Underst. (CVIU) 136, 45–58 (2015)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2246–2252 (1999)Google Scholar
  24. 24.
    Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: ICPR 2004, Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 28–31 (2004)Google Scholar
  25. 25.
    KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Advanced Video Based Surveillance Systems, pp. 135–144. Springer, New York (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zubair Iftikhar
    • 1
    Email author
  • Prashan Premaratne
    • 1
  • Peter Vial
    • 1
  • Shuai Yang
    • 1
  1. 1.School of Electrical Computer and Telecommunications EngineeringUniversity of WollongongNorth WollongongAustralia

Personalised recommendations