An Adaptive Multi-algorithm Ensemble for Fingerprint Matching

  • Kamlesh Tiwari
  • Vandana Dixit Kaushik
  • Phalguni Gupta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)


Any well known fingerprint matching algorithm cannot provide 100% accuracy for all databases. One should explore the possibility of fusion of multi-algorithms to achieve better performance on such databases. One of the major challenges is to design a fusion strategy which is both adaptive and improving with respect to the candidate database. This paper proposes an adaptive ensemble using statistical properties of two well known state-of-the-art minutiae based fingerprint matching algorithms to achieve (1) improvement on fingerprint recognition benchmark, (2) outperform on multiple databases. Experiments have been conducted on two databases containing multiple fingerprint impressions of 140 and 500 users. One of them is widely used publicly available databases and another one is our in-house database. Experimental results have shown the significant gain in performance.


Fingerprint Matching Minutiae ROC curve Multi-algorithm Adaptive 


  1. 1.
    Biometric System Laboratory of University of Bologna.
  2. 2.
    NIST Biometric Image Software.
  3. 3.
    Bebis, G., Deaconu, T., Georgiopoulos, M.: Fingerprint identification using delaunay triangulation. In: International Conference on Information Intelligence and Systems, pp. 452–459 (1999)Google Scholar
  4. 4.
    Cappelli, R., Ferrara, M., Franco, A., Maltoni, D.: Fingerprint verification competition 2006. Biometric Technol. Today 15(7), 7–9 (2007)CrossRefGoogle Scholar
  5. 5.
    Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylindercode: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2128–2141 (2010)CrossRefGoogle Scholar
  6. 6.
    Chikkerur, S., Cartwright, A.N., Govindaraju, V.: K-plet and coupled BFS: a graph based fingerprint representation and matching algorithm. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 309–315. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Garris, M.D., Watson, C.I., McCabe, R.M., Wilson, C.L.: User’s guide to NIST fingerprint image software (NFIS) (2001)Google Scholar
  8. 8.
    Goshtasby, A.: Piecewise linear mapping functions for image registration. Pattern Recogn. 19(6), 459–466 (1986)CrossRefGoogle Scholar
  9. 9.
    He, Y., Tian, J., Li, L., Chen, H., Yang, X.: Fingerprint matching based on global comprehensive similarity. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 850–862 (2006)CrossRefGoogle Scholar
  10. 10.
    He, Y., Tian, J., Luo, X., Zhang, T.: Image enhancement and minutiae matching in fingerprint verification. Pattern Recogn. Lett. 24(9), 1349–1360 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jain, A., Hong, L., Bolle, R.: On-line fingerprint verification. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 302–314 (1997)CrossRefGoogle Scholar
  12. 12.
    Jea, T.-Y., Govindaraju, V.: A minutia-based partial fingerprint recognition system. Pattern Recogn. Lett. 38(10), 1672–1684 (2005)CrossRefGoogle Scholar
  13. 13.
    Khalifa, A.B., Gazzah, S., BenAmara, N.E.: Adaptive score normalization: a novel approach for multimodal biometric systems. World Acad. Sci. Eng. Technol. Int. J. Comput. Sci. Eng. 7(3), 882–890 (2013)Google Scholar
  14. 14.
    Luo, X., Tian, J., Wu, Y.: A minutiae matching algorithm in fingerprint verification. Int. Conf. Pattern Recogn. 4, 833–836 (2000)CrossRefGoogle Scholar
  15. 15.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Nilsson, K., Bigun, J.: Localization of corresponding points in fingerprints by complex filtering. Pattern Recogn. Lett. 24(13), 2135–2144 (2003)CrossRefGoogle Scholar
  17. 17.
    Ramo, P., Tico, M., Onnia, V., Saarinen, J.: Optimized singular point detection algorithm for fingerprint images. Int. Conf. Image Process. 3, 242–245 (2001)Google Scholar
  18. 18.
    Ratha, N.K., Bolle, R.M., Pandit, V.D., Vaish, V.: Robust fingerprint authentication using local structural similarity. In: IEEE Workshop on Applications of Computer Vision, pp. 29–34 (2000)Google Scholar
  19. 19.
    Ross, A., Rattani, A., Tistarelli, M.: Exploiting the doddington zoo effect in biometric fusion. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems 2009, BTAS2009, pp. 1–7. IEEE (2009)Google Scholar
  20. 20.
    Wang, X., Li, J., Niu, Y.: Fingerprint matching using orientation codes and polylines. Pattern Recogn. Lett. 40(11), 3164–3177 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kamlesh Tiwari
    • 1
  • Vandana Dixit Kaushik
    • 2
  • Phalguni Gupta
    • 3
  1. 1.Department of CSISBirla Institute of Technology and SciencePilaniIndia
  2. 2.Department of CSEHarcourt Butler Technological InstituteKanpurIndia
  3. 3.National Institute of Technical Teachers’ Training & ResearchKolkataIndia

Personalised recommendations