Using the Ranking-Based KNN Approach for Drug Repositioning Based on Multiple Information

  • Xin Tian
  • Mingyuan Xin
  • Jian Luo
  • Zhenran JiangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)


Using effective computer methods to infer potential drug-disease relationships can provide clues for the discovery new uses of old drugs. This paper introduced a Ranking-based k-Nearest Neighbor (Re-KNN) method to drug repositioning for cardiovascular diseases. The main characteristic of the Re-KNN lies in combining conventional KNN algorithm with Ranking SVM (Support Vector Machine) algorithm to get neighbors that are more trustable. By integrating the chemical structural similarity, target-based similarity, side-effect similarity and topological similarity information, Re-KNN method can obtain an improved AUC (Area under ROC Curve) and AUPR (Area under Precision-Recall curve) compared with other methods, which prove the validity and efficiency of multiple features integration.


Cardiovascular disease Drug reposition Ranking-based KNN Ranking SVM 



This work was partially supported by National Basic Research Program of China (Grants No. 2012CB910400), the Fundamental Research Funds for the Central Universities (78260026), and National Science and Technology Support Plan Project (2015BAH12F01).


  1. 1.
    Adams, C.P., Brantner, V.V.: Estimating the cost of new drug development: is it really $802 million? Health Aff. 25(2), 420–428 (2006)CrossRefGoogle Scholar
  2. 2.
    Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3(8), 673–683 (2004)CrossRefGoogle Scholar
  3. 3.
    Yang, L., Agarwal, P.: Systematic drug repositioning based on clinical side-effects. PLoS ONE 6(12), e28025 (2011)CrossRefGoogle Scholar
  4. 4.
    Sanseau, P., Agarwal, P., Barnes, M.R., et al.: Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30(4), 317–320 (2012)CrossRefGoogle Scholar
  5. 5.
    Clouser, C.L., Patterson, S.E., Mansky, L.M.: Exploiting drug repositioning for discovery of a novel HIV combination therapy. J. Virol. 84(18), 9301–9309 (2010)CrossRefGoogle Scholar
  6. 6.
    Anne, C., James, P., Alistair, B., et al.: Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov. 11(11), 833–846 (2012)CrossRefGoogle Scholar
  7. 7.
    Cheng, F., Liu, C., Jiang, J., et al.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)CrossRefGoogle Scholar
  8. 8.
    Alaimo, S., Pulvirenti, A., Giugno, R., et al.: Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 29(16), 2004–2008 (2013)CrossRefGoogle Scholar
  9. 9.
    Wu, Z., Wang, Y., Chen, L.: Network-based drug repositioning. Mol. BioSyst. 9(6), 1268–1281 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gottlieb, A., Stein, G.Y., Ruppin, E., et al.: Predict: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7, 496 (2011)CrossRefGoogle Scholar
  11. 11.
    Chen, H., Zhang, H., Zhang, Z., et al.: Network-based inference methods for drug repositioning. Comput. Math. Methods Med. 2015, 130620 (2015)Google Scholar
  12. 12.
    Zhang, P., Agarwal, P., Obradovic, Z.: Computational drug repositioning by ranking and integrating multiple data sources. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 579–594. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Chen, S., Deng, N., et al.: Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS ONE 8(11), e78518 (2013)CrossRefGoogle Scholar
  14. 14.
    Chiang, T.H., Lo, H.Y., Lin, S.D.: A ranking-based KNN approach for multi-label classification. JMLR W&CP. 25, 81–96 (2012)Google Scholar
  15. 15.
    Yu, H., Kim, J., Kim, Y., et al.: An efficient method for learning nonlinear ranking SVM functions. Inf. Sci. 209, 37–48 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Laarhoven, T.V., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS ONE 8(6), e66952 (2013)CrossRefGoogle Scholar
  17. 17.
    Shi, J.Y., Yiu, S.M., Li, Y., et al.: Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering. Methods 83, 98–104 (2015)CrossRefGoogle Scholar
  18. 18.
    Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 29–34 (2000)CrossRefGoogle Scholar
  19. 19.
    Yap, C.W.: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32(7), 1466–1474 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)CrossRefGoogle Scholar
  21. 21.
    Xia, Z., Wu, L.Y., Zhou, X., et al.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(Suppl 2), S6 (2010)CrossRefGoogle Scholar
  22. 22.
    Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Depatment of Informatics, Aristotle University of Thessaloniki, Greece (2006)Google Scholar
  23. 23.
    Biggs, R., Hayton-Williams, D.S.: Epsilon-aminocaproic acid in the treatment of hemophilia. Br. Dent. J. 124(124), 157 (1968)Google Scholar
  24. 24.
    Leduc, L., Dubois, E., Takser, L., et al.: Dalteparin and low-dose aspirin in the prevention of adverse obstetric outcomes in women with inherited thrombophilia. J. Obstet. Gynaecol. Can. 29(10), 787–793 (2007)CrossRefGoogle Scholar
  25. 25.
    Giardini, O., Cantani, A., Donfrancesco, A.: Vitamin E therapy in homozygous beta-thalassemia. N. Engl. J. Med. 305(11), 644 (1981)Google Scholar
  26. 26.
    Kerr, C.R., Prystowsky, E.N., Smith, W.M., et al.: Disopyramide phosphate in wolff-parkinson-white syndrome. Am. J. Cardiol. 47(2), 495 (1981)CrossRefGoogle Scholar
  27. 27.
    Chaumais, M.C., Perros, F., Dorfmuller, P., et al.: Nilotinib and imatinib therapy in experimental pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 32(6), 1354–1365 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xin Tian
    • 1
  • Mingyuan Xin
    • 1
  • Jian Luo
    • 1
  • Zhenran Jiang
    • 2
    Email author
  1. 1.Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Multidimensional Information Processing, Department of Computer Science and TechnologyEast China Normal UniversityShanghaiChina

Personalised recommendations