Identifying miRNA-mRNA Regulatory Modules Based on Overlapping Neighborhood Expansion from Multiple Types of Genomic Data

  • Jiawei LuoEmail author
  • Bin Liu
  • Buwen Cao
  • Shulin Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)


MicroRNA (miRNA)-mRNA regulatory modules are key entities to disorders. Several computational methods are developed to identify miRNA-mRNA modules. Although these methods have achieved ideal performance, the number of modules needed to be predefined. Therefore, identification of modules is still computationally challenging. In this study, a new algorithm called MiRMD (miRNA-mRNA Regulatory Modules Detection) is presented to identify miRNA-mRNA modules, which do not need to predefine the number of modules. Firstly, a miRNA-mRNA regulatory network is constructed, then core structures are detected in this network by merging cohesive modules. Next, some overlapping neighbor nodes are added into the cores according to the density. Finally, some overlap modules are filtered. The experimental results based on three cancers datasets show that modules identified by MiRMD are more coherent and functional enriched than the other two methods according to MiMEC and GO enrichment. Particularly, modules identified by our method are strongly implicated in cancer.


miRNA-mRNA regulatory modules Cores Merging Density 



The authors would like to acknowledge the assistance provided by National Natural Science Foundation of China (Grant nos. 61572180 and 61472467) and Hunan Provincial Natural Science Foundation of China (Grant no. 13JJ2017).


  1. 1.
    Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)CrossRefGoogle Scholar
  2. 2.
    Ambros, V.: The functions of animal micrornas. Nature 431, 350–355 (2004)CrossRefGoogle Scholar
  3. 3.
    Du, T., Zamore, P.D.: Beginning to understand microRNA function. Cell Res. 17, 661–663 (2007)CrossRefGoogle Scholar
  4. 4.
    Bushati, N., Cohen, S.M.: Microrna functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007)CrossRefGoogle Scholar
  5. 5.
    Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Mnard, S., Palazzo, J.P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G.A., Querzoli, P., Negrini, M., Croce, C.M.: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005)CrossRefGoogle Scholar
  6. 6.
    Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., Vessella, R.L., Tammela, T.L.J., Visakorpi, T.: microRNA expression profiling in prostate cancer. Cancer Res. 67, 6130–6135 (2007)CrossRefGoogle Scholar
  7. 7.
    Cui, Q., Yu, Z., Purisima, E.O., Wang, W.: Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Bio. 2, 46 (2006)Google Scholar
  8. 8.
    Liang, H., Li, W.H.: microRNA regulation of human protein–protein interaction network. RNA 13, 1402–1408 (2007)CrossRefGoogle Scholar
  9. 9.
    Gusev, Y., Schmittgen, T.D., Lerner, M., Postier, R., Brackett, D.: Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in Cancer. BMC Bioinform. 8, S16 (2007)CrossRefGoogle Scholar
  10. 10.
    Xu, J., Wong, C.: A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14, 1276–1283 (2008)CrossRefGoogle Scholar
  11. 11.
    Hartwell, L.H., John, J.H., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)CrossRefGoogle Scholar
  12. 12.
    Croce, C.M.: Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009)CrossRefGoogle Scholar
  13. 13.
    Joung, J.G., Hwang, K.-B., Nam, J.-W., Zhang, B.T.: Discovery of microRNA-mRNA modules via population based probabilistic learning. Bioinformatics 23, 1141–1147 (2007)CrossRefGoogle Scholar
  14. 14.
    Shalgi, R., Lieber, D., Oren, M., Pilpel, Y.: Global and local architecture of the mammalian microRNA transcription factor regulatory network. PLoS Comput. Biol. 3, e131 (2007)CrossRefGoogle Scholar
  15. 15.
    Liu, B., Liu, L., Tsykin, A., Goodall, G.J., Green, J.E., Zhu, M., Kim, C.H., Li, J.: Identifying functional miRNA-mRNA regulatory modules with correspondence latent Dirichlet allocation. Bioinformatics 26, 3015–3111 (2010)Google Scholar
  16. 16.
    Zhang, S., Li, Q., Liu, J., Zhou, X.J.: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 27, i401–i409 (2011)CrossRefGoogle Scholar
  17. 17.
    Pio, G., Ceci, M., D’Elia, D., Loglisci, C., Malerba, D.: A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes. BMC Bioinform. 14, S8 (2013)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Liang, C., Wong, K.C., Luo, J., Zhang, L.: Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion. Bioinformatics 30, i2627–i2635 (2014)CrossRefGoogle Scholar
  19. 19.
    Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by Adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)CrossRefGoogle Scholar
  20. 20.
    Krek, A., Grun, D., Proy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., Rajewsky, N.: Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005)CrossRefGoogle Scholar
  21. 21.
    Huang, J.C., Babak, T., Corson, T.W., Chua, G., Khan, S., Gallie, B.L., Hughes, T.R., Blencowe, B.J., Frey, B.J., Morris, Q.D.: Using expression profiling data to identify human microRNA targets. Nat. Methods 4, 1045–1049 (2007)CrossRefGoogle Scholar
  22. 22.
    Lu, Y., Zhou, Y., Qu, W., Minghua, D., Chenggang, Z.: A Lasso regression model for the construction of microRNA target regulatory networks. Bioinformatics 27, 2406–2413 (2011)CrossRefGoogle Scholar
  23. 23.
    Min, W., Li, X., Kwoh, C.-K., Ng, S.K.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform. 10, 169 (2009)CrossRefGoogle Scholar
  24. 24.
    Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012)CrossRefGoogle Scholar
  25. 25.
    Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Prss, M., Reuter, I., Schacherer, F.: TRANSFAC: an integrated system for gene expression regulation. Nucl. Acids Res. 28, 316–319 (2000)CrossRefGoogle Scholar
  26. 26.
    Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P.: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009)CrossRefGoogle Scholar
  27. 27.
    Livstone, M.S., Breitkreutz, B.J., Stark, C., Boucher, L., Andrew, C.A., Oughtred, R., Nixon, J., Reguly, T., Rust, J., Winter, A., Dolinski, K., Tyers, M.: The BioGRID interaction database: 2011 update. Nucl. Acids Res. 39, D698–D704 (2011)CrossRefGoogle Scholar
  28. 28.
    Karim, S., Masud, M., Liu, L., Le, T.D., Lim, J.: Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics 17, 7 (2015)CrossRefGoogle Scholar
  29. 29.
    Chen, L., Wang, H., Zhang, L., Wan, L., Wang, Q., Yukui, S., He, Y., He, W.: Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks. BMC Bioinform. 11, 392 (2011)CrossRefGoogle Scholar
  30. 30.
    Koturbash, I., Zemp, F.J., Pogribny, I., Kovalchuk, O.: Small molecules with big effects: the role of the microRNAome in cancer and carcinogennesis. Mutat. Res. 722, 94–105 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Computer Science and Electronics Engineering & Collaboration and Innovation Center for Digital Chinese Medicine of 2011 Project of Colleges and Universities in Hunan ProvinceHunan UniversityChangshaChina

Personalised recommendations