Advertisement

Analysis of Mitochondrial Hsp70 Homolog Amino Acid Sequences of Amitochondriate Organisms Using Apriori and Decision Tree

  • Jiwon SongEmail author
  • Taeseon Yoon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)

Abstract

In the endosymbiont hypothesis, the host cell was initially believed to have developed a nucleus and other major characteristics of a eukaryotic cell before taking in the bacteria which in time became mitochondria. This explanation is mainly grounded on existence of early-branching lineages of eukaryote that lack mitochondria. However, an alternative view has gained more support after evolutionary remnants of mitochondria were found in these organisms, where the host cell was yet to evolve the intricacy of eukaryote when the endosymbiosis first began. In this research, we examined the amino acid sequences of mitochondrial Hsp70 found in Giardia intestinalis, Trichomonas vaginalis, and Vairimorpha necatrix from each of the three major amitochondriate lineages. Analyzing the sequences with apriori and decision tree algorithm, we will compare the data with the sequence of the mitochondriate Mus musculus, and therefore provide grounds to evaluate the scenarios of endosymbiosis.

Keywords

Mitochondria Endosymbiosis Symbiogenesis Archezoa Giardia intestinalis Trichomonas vaginalis Vairimorpha necatrix Mitochondrial Hsp70 mtHsp70 Heat shock protein 70 Heat shock protein 70kDa HSPA9 Decision tree Apriori 

References

  1. 1.
    Mereschkowsky, C.: Über natur und ursprung der chromatophoren im pflanzenreiche (1905)Google Scholar
  2. 2.
    Sagan, L.: On the origin of mitosing cells. J. Theoret. Biol. 14(3), 225–IN6 (1967)CrossRefGoogle Scholar
  3. 3.
    Cavalier-Smith, T.: A 6-kingdom classification and a unified phylogeny. In: Endocytobiology II, pp. 1027–1034 (1983)Google Scholar
  4. 4.
    Cavalier-Smith, T.: Kingdom protozoa and its 18 phyla. Microbiol. Rev. 57(4), 953–994 (1993)Google Scholar
  5. 5.
    Hirt, R.P., et al.: Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Nat. Acad. Sci. 96(2), 580–585 (1999)CrossRefGoogle Scholar
  6. 6.
    Keeling, P.J., Luker, M.A., Palmer, J.D.: Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol. Biol. Evol. 17(1), 23–31 (2000)CrossRefGoogle Scholar
  7. 7.
    Philippe, H.: Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions. Proc. Roy. Soc. Lond. B: Biolog. Sci. 267(1449), 1213–1221 (2000)CrossRefGoogle Scholar
  8. 8.
    Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. Roy. Soc. Interface 2(4), 295–307 (2005)CrossRefGoogle Scholar
  9. 9.
    Koonin, E.V.: The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 11(5), 209 (2010)CrossRefGoogle Scholar
  10. 10.
    Embley, T.M., Hirt, R.P.: Early branching eukaryotes? Curr. Opin. Genet. Dev. 8(6), 624–629 (1998)CrossRefGoogle Scholar
  11. 11.
    Müller, M., Lindmark, D.G.: Respiration of hydrogenosomes of Tritrichomonas foetus. II. Effect of CoA on pyruvate oxidation. J. Biolog. Chem. 253(4), 1215–1218 (1978)Google Scholar
  12. 12.
    Tovar, J., Fischer, A., Clark, C.G.: The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32(5), 1013–1021 (1999)CrossRefGoogle Scholar
  13. 13.
    Bui, E.T., Bradley, P.J., Johnson, P.J.: A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Nat. Acad. Sci. 93(18), 9651–9656 (1996)CrossRefGoogle Scholar
  14. 14.
    Germot, A., Philippe, H., Le Guyader, H.: Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Nat. Acad. Sci. 93(25), 14614–14617 (1996)CrossRefGoogle Scholar
  15. 15.
    Horner, D.S., et al.: Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. Roy. Soc. Lond. B: Biolog. Sci. 263(1373), 1053–1059 (1996)CrossRefGoogle Scholar
  16. 16.
    Roger, A.J., Clark, C.G., Doolittle, W.F.: A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Nat. Acad. Sci. 93(25), 14618–14622 (1996)CrossRefGoogle Scholar
  17. 17.
    Gray, M.W.: Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4(9), a011403 (2012)CrossRefGoogle Scholar
  18. 18.
    Lill, R., Mühlenhoff, U.: Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30(3), 133–141 (2005)CrossRefGoogle Scholar
  19. 19.
    Gupta, R.S., Singh, B.: Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr. Biol. 4(12), 1104–1114 (1994)CrossRefGoogle Scholar
  20. 20.
    Hartl, F.-U., Hlodan, R., Langer, T.: Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem. Sci. 19(1), 20–25 (1994)CrossRefGoogle Scholar
  21. 21.
    Boorstein, W.R., Ziegelhoffer, T., Craig, E.A.: Molecular evolution of the Hsp70 multigene family. J. Mol. Evol. 38(1), 1–17 (1994)CrossRefGoogle Scholar
  22. 22.
    Tovar, J., et al.: Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426(6963), 172–176 (2003)CrossRefGoogle Scholar
  23. 23.
    Arisue, N., et al.: Mitochondrial-type Hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol. Int. 51(1), 9–16 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Steinbüchel, A., Müller, M.: Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol. Biochem. Parasitol. 20(1), 57–65 (1986)CrossRefGoogle Scholar
  25. 25.
    Vávra, J.: “Polar vesicles” of microsporidia are mitochondrial remnants (“mitosomes”). Folia Parasitol. 52(1/2), 193–195 (2005)CrossRefGoogle Scholar
  26. 26.
    Hirt, R.P., et al.: A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr. Biol. 7(12), 995–998 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Hankuk Academy of Foreign Studies/Natural ScienceYong-inRepublic of Korea

Personalised recommendations