Advertisement

A Variable Neighborhood Search Approach for the Capacitated m-Ring-Star Problem

  • Carlos FrancoEmail author
  • Eduyn López-Santana
  • Germán Mendez-Giraldo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9771)

Abstract

In this paper, we proposed an algorithm based on variable neighborhood search (VNS) for the capacitated m-Ring-Star problem. This problem has several real applications in communications networks, rapid transit system planning and optical fiber networks. The problem consists in design m rings or cycles that begins of a central depot and visits a set of customers and transition or steiner nodes. While the nodes don’t belong to a ring these must be allocated or assign to a customer or steiner node that belongs to a ring. The number of customers allocated or visited in each ring must not exceed the maximum capacity. The goal is to minimize the visiting and allocation cost. For solving the problem, we propose a VNS approach based on random perturbation for escaping from the local optimal solutions. Our method reached the optimal solution in a reasonable amount of time in a set of instances from the literature.

Keywords

m-Ring-Star problem Variable neighborhood search Network design Combinatorial optimization 

References

  1. 1.
    Baldacci, R., Dell’Amicoy, M., González, J.S.: The capacitated m-Ring-Star problem. Oper. Res. 55, 1147–1162 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Calvetea, H.I., Galéy, C., Iranzo, J.A.: MEALS: a multiobjective evolutionary algorithm with local search for solving the bi-objective ring star problem. Eur. J. Oper. Res. 250, 377–388 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Calvetea, H.I., Galéy, C., Iranzo, J.A.: An efficient evolutionary algorithm for the ring star problem. Eur. J. Oper. Res. 231, 22–33 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liefooghe, A., Jourdany, L., Talbi, E.G.: Metaheuristics and cooperative approaches for the bi-objective ring star problem. Comput. Oper. Res. 37, 1033–1044 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Labbé, M., Laporte, G., Martíny, I., González, J.S.: The ring star problem polyhedral analysis and exact algorithm. Networks 43, 177–189 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lee, Y., Chiu, S.Y., Sanchez, J.: A branch and cut algorithm for the steiner ring star problem. Int. J. Manag. Sci. 4, 21–34 (1998)Google Scholar
  7. 7.
    Naji-Azimi, Z., Salariy, M., Toth, P.: An integer linear programming based heuristic for the capacitated m-Ring-Star problem. Eur. J. Oper. Res. 217, 17–25 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Azimi, Z.N., Salariy, M., Toth, P.: A heuristic procedure for the capacitated m-Ring-Star problem. Eur. J. Oper. Res. 207, 1227–1234 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hoshinoay, E.A., de Souza, C.C.: A branch-and-cut-and-price approach for the capacitated m-Ring-Star problem. Discrete Appl. Math. 160, 2728–2741 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hoshinoay, E.A., de Souza, C.C.: A branch-and-cut-and-price approach for the capacitated m-Ring-Star problem. Electron. Notes Discrete Math. 35, 103–108 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Berinskyy, H., Zabala, P.: An integer linear programming formulation and branch-and-cut algorithm for the capacitated m-Ring-Star problem. Electron. Notes Discrete Math. 37, 273–278 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carlos Franco
    • 1
    Email author
  • Eduyn López-Santana
    • 2
  • Germán Mendez-Giraldo
    • 2
  1. 1.Universidad Católica de ColombiaBogotáColombia
  2. 2.Universidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations