Skip to main content

Some Problems on Localized Vibrations and Waves in Thin Shells

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 572))

Abstract

Some problems on localized vibrations and waves in thin isotropic and laminated cylindrical shells are considered in this Chapter. To study vibrations of thin laminated shells, the equivalent single layer model for the whole packet of a sandwich is proposed. The basic goal of this paper is to demonstrate two asymptotic approaches for studying localized vibrations of thin shells. At first, the asymptotic method of Tovstik is applied to study free stationary vibrations localized in a neighbourhood of a fixed generatrix or parallel called the weakest one. As an interesting example, free localized vibrations of a laminated cylindrical shell containing polarized magnetorheological elastomer and affected by an external magnetic field are analyzed. Then the asymptotic method for investigation of running localized waves (wave packets) in thin shells is stated. The solution of governing equations is constructed in the form of a superposition of wave packets running in a thin non-circular prestressed cylinder in the circumferential direction. The influence of non-uniform stationary and dynamic pressures on running wave packets is briefly studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avdoshka, I. V., & Mikhasev, G. I. (2001). Wave packets in a thin cylindrical shell under a non-uniform axial load. Journal of Applied Mathematics and Mechanics, 65(2), 301–309.

    Article  MATH  Google Scholar 

  • Babich, V. M., & Buldyrev, V. S. (1991). Asymptotic method in short-waves diffraction theory. Berlin: Springer.

    Book  Google Scholar 

  • Babich, V. M., Buldyrev, V. S., & Molotkov, I. A. (1985). Space time ray method, linear and nonlinear waves. Leningrad: Leningrad University Press.

    MATH  Google Scholar 

  • Boczkowska, A., Awietjan, S. F., Pietrzko, S., & Kurzydlowski, K. J. (2012). Mechanical properties of magnetorheological elastomers under shear deformation. Composites: Part B, 43, 636–640.

    Article  Google Scholar 

  • Bolotin, V. V., & Novichkov, Yu N. (1980). Mechanics of multilayer structures. Moscow: Mashinostroenie.

    Google Scholar 

  • Carrera, E. (1999). Multilayered shell theories accounting for layerwise mixed description. part 1: Governing equations. AIAA Journal, 37(9), 1107–1116.

    Article  Google Scholar 

  • Carrera, E. (2002). Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering, 9, 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Carrera, E. (2003). Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering, 10, 215–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, H.-X., & Gong, X.-L. (2008). Application of magnetorheological elastomer to vibration absorber. Communications in Nonlinear Science and Numerical Simulation, 13, 1938–1947.

    Article  Google Scholar 

  • Farshad, M., & Benine, A. (2004). Magnetoactive elastomer composites. Polymer Testing, 23, 347–353.

    Article  Google Scholar 

  • Ferreira, A. J. M., Carrera, E., Cinefra, M., & Roque, C. M. C. (2011). Analysis of laminated doublycurved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Computational Mechanics, 48(1), 13–25.

    Article  MATH  Google Scholar 

  • Flügge, W. (1962). Stresses in shells. Berlin, Göttingen, Heidelberg: Springer.

    MATH  Google Scholar 

  • Fröman, N., & Fröman, P. O. (1965). JWKB-Approximation. Contributions to the theory. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Gibson, R. F. (2010). A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures, 92, 2793–2810.

    Article  Google Scholar 

  • J.M. Ginder, W.F. Schlotter, & M.E. Nichols. Magnetorheological elastomers in tunable vibration absorbers. In Proceedings of the SPIE, pp. 418–424, (2001).

    Google Scholar 

  • Gol’denveizer, A. L. (1961). Theory of elastic thin shell. London: Pergamon Press.

    Google Scholar 

  • Grigolyuk, E. I., & Kulikov, G. M. (1988). Multilayer reinforced shells: Calculation of pneumatic tires. Moscow: Mashinostroenie.

    Google Scholar 

  • Korchevskaya, E., & Mikhasev, G. (2006). Free vibrations of laminated cylindrical shell under action of non-uniformly distributed axial forces. Mechanics of Solids, 41(5), 130–138.

    Google Scholar 

  • Korobko, E. V., Zhurauski, M. A., Novikova, Z. A., & Kuzmin, V. A. (2009). Rheological properties of magnetoelectrorheological fluids with complex disperse phase. Journal of Physics: Conference Series, 149, 12–65.

    Google Scholar 

  • Korobko, E. V., Mikhasev, G. I., Novikova, Z. A., & Zurauski, M. A. (2012). On damping vibrations of three-layered beam containing magnetorheological elastomer. Journal of Intelligent Material Systems and Structures, 23(9), 1019–1023.

    Article  Google Scholar 

  • Kulikov, G. M., & Plotnikova, S. V. (2013). Advanced formulation for laminated composite shells: 3d stress analysis and rigid-body motions. Composite Structures, 95(3), 236–246.

    Article  Google Scholar 

  • Maslov, V. P. (1977). Complex WKB method in nonlinear equations. Moscow: Nauka.

    MATH  Google Scholar 

  • Mikhasev, G. (1997). Free and parametric vibrations of cylindrical shell under static and periodic axial loads. Technische Mechanik, 17(3), 209–216.

    Google Scholar 

  • Mikhasev, G. (1998a). Travelling wave packets in an infinite thin cylindrical shell under internal pressure. Journal of Sound and Vibration, 209(4), 543–559.

    Article  MATH  Google Scholar 

  • Mikhasev, G. (2014). On localized modes of free vibrations of single-walled carbon nanotubes embedded in nonhomogeneous elastic medium. ZAMM, 94(1–2), 130–141.

    Article  MathSciNet  Google Scholar 

  • Mikhasev, G. I. (1992). Low-frequency free vibrations of viscoelastic cylindrical shells. International Applied Mechanics, 28(9), 586–590.

    Article  MATH  Google Scholar 

  • Mikhasev, G. I. (1996). Localized wave forms of motion of an infinite shell of revolution. Journal of Applied Mathematics and Mechanics, 60(5), 813–820.

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhasev, G. I. (2002). Localized families of bending waves in a thin medium-length cylindrical shell under pressure. Journal of Sound and Vibration, 253(4), 833–857.

    Article  MATH  Google Scholar 

  • Mikhasev G. I. (1998b). Asymptotic solutions of a system of equations of shallow shells in the form of two-dimensional wave packets. Russian Mathematics (Izvestiya VUZ. Matematika), 42(2), 44–50.

    Google Scholar 

  • Mikhasev, G. I., & Kuntsevich, S. P. (2002). Local parametric vibrations of noncircular conical shell under action of non-uniform pulsing pressure. Mechanics of Solids, 37(3), 134–139.

    Google Scholar 

  • Mikhasev, G. I., & Tovstik, P. E. (2009). Localized vibrations and waves in thin shells. Asymptotic methods. Moscow: FIZMATLIT.

    Google Scholar 

  • Mikhasev, G. I., Botogova, M. G., & Korobko, E. V. (2011). Theory of thin adaptive laminated shells based on magnetorheological materials and its application in problems on vibration suppression. In H. Altenbach & V. A. Eremeyev (Eds.), Shell-like structures (Vol. 15, pp. 727–750). Advanced Structured Materials Berlin: Springer.

    Google Scholar 

  • Mikhasev, G. I., Altenbach, H., & Korchevskaya, E. A. (2014). On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer. Composite Structures, 113, 186–196.

    Article  Google Scholar 

  • Qatu, M. S. (2004). Vibration of laminated shells and plates. San Diego: Elsevier.

    MATH  Google Scholar 

  • Qatu, M. S., Sullivan, R. W., & Wang, W. (2010). Recent research advances on the dynamic analysis of composite shells: 2000–2009. Composite Structures, 93, 14–31.

    Article  Google Scholar 

  • Qu, Y., Long, X., Wu, S., & Meng. G. (2013). A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Composite Structures, 98, 169–191.

    Google Scholar 

  • Reddy, J. N. (2003). Mechanics of laminated composite plates and shells: Theory and analysis. Florida: CRC Press.

    Google Scholar 

  • Sorokin, V. V., Ecker, E., Stepanov, G. V., Shamonin, M., Monkman, G. J., Kramarenko, E Yu., et al. (2014). Experimental study of the magnetic field enhanced payne effect in magnetorheological elastomers. Soft Matter, 10, 8765–8776.

    Article  Google Scholar 

  • Stepanov, G. V., Abramchuk, S. S., Grishin, D. A., Nikitin, L. V., Kramarenko, E Yu., & Khokhlov, A. R. (2007). Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer, 48, 488–495.

    Article  Google Scholar 

  • Toorani, M. H., & Lakis, A. A. (2000). General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects. Journal of Sound and Vibration, 237(4), 561–615.

    Article  Google Scholar 

  • Tovstik, P. E. (1983a). Two-dimensional problems of buckling and vibrations of the shells of zero gaussian curvature. Soviet Physics Doklady, 28(7), 593–594.

    MATH  Google Scholar 

  • Tovstik, P. E. (1983b). Some problems in cylindrical and conical shell buckling. Journal of Applied Mathematics and Mechanics, 47(5), 657–663.

    Article  MATH  Google Scholar 

  • Tovstik, P. E., & Smirnov, A. L. (2001). Asymptotic methods in the buckling theory of elastic shells. Singapore: World Scientific.

    MATH  Google Scholar 

  • Yanchen, L., Jianchun , L., Weihua, L., & Haiping, D. (2014). A state-of-the-art review on magnetorheological elastomer devices. Smart Materials and Structures, 23(12), 123001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadi Mikhasev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Mikhasev, G. (2017). Some Problems on Localized Vibrations and Waves in Thin Shells. In: Altenbach, H., Eremeyev, V. (eds) Shell-like Structures. CISM International Centre for Mechanical Sciences, vol 572. Springer, Cham. https://doi.org/10.1007/978-3-319-42277-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42277-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42275-6

  • Online ISBN: 978-3-319-42277-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics