Skip to main content

Methods and Models of Optimization

  • Chapter
  • First Online:
Introduction to Process Control

Part of the book series: Springer Texts in Business and Economics ((STBE))

  • 1884 Accesses

Abstract

Most engineering problems, including planning, control and design, have more than one solution. The theory of optimization provides a mathematical basis for the establishing the acceptability conditions that outline the class of acceptable solutions, for the definition of the criterion that provides the measure of goodness of every individual solution, and the optimization procedure (algorithm) that results in finding the optimal solution, i.e. the solution maximizing the value of the goodness criterion. These three components, the class of acceptable solutions, the criterion of goodness, and the optimization procedure are to be present in any definition of the optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Solutions

Solutions

4.1.1 Exercise 4.1: Problem 1

The first constraint reflects the requirement on the total weight of the mixture:

$$ {x}_1+{x}_2+{x}_3+{x}_4+{x}_5+{x}_6=500 $$

The following expressions represent the required concentrations of each chemical ingredient in the final mixture:

$$ Fe=.15\cdot {x}_1+.40\cdot {x}_2+.35\cdot {x}_3+.16\cdot {x}_4+.33\cdot {x}_5+.07\cdot {x}_6\ge\ .20\cdot 500 $$
$$ Zn=.38\cdot {x}_1+.12\cdot {x}_2+.05\cdot {x}_3+.11\cdot {x}_4+.01\cdot {x}_5+.23\cdot {x}_6\ge\ .10\cdot 500 $$
$$ Si{O}_2=.41\cdot {x}_1+.40\cdot {x}_2+.27\cdot {x}_3+.21\cdot {x}_4+.60\cdot {x}_5+.45\cdot {x}_6\le\ .42\cdot 500 $$
$$ Cu=.06\cdot {x}_1+.01\cdot {x}_2+.28\cdot {x}_3+.18\cdot {x}_4+.05\cdot {x}_5+.25\cdot {x}_6\ge\ .05\cdot 500 $$

The feasibility constraints reflect the availability of the materials. The amount of each material used is equal to the percentage of that material multiplied by the total weight of the end mixture. This must be no greater than the available weight of the material.

$$ {x}_1\le 250 $$
$$ {x}_2\le 590 $$
$$ {x}_3\le 1000 $$
$$ {x}_4\le 520 $$
$$ {x}_5\le 2500 $$
$$ {x}_6\le 800 $$

It should be noted that all variables of this problem are non-negative, but this requirement is very common for linear programming problems and is addressed by the solution algorithm.

The “minimum cost” requirement is addressed as follows:

$$ 120\cdot {x}_1+150\cdot {x}_2+211\cdot {x}_3+140\cdot {x}_4+75\cdot {x}_5+214\cdot {x}_6\ \to Min $$

The problem solution is obtained by the use of the linear programming software available in MATLAB. The optimal weight of each material in tons is:

x 1

x 2

x 3

x 4

x 5

x 6

Total

Cost,$

68.2363

0.0000

0.0000

197.5259

234.2378

0.0000

500.0000

53409.80

and the chemical composition of the mixture is

Fe%

Zn%

SiO 2%

Cu%

23.83

10.00

42.00

10.27

4.1.2 Exercise 4.1: Problem 2

For this problem, we were required to use the gradient-based LSM procedure to find the optimal solution of the a coefficients in the following equation.

$$ {y}^{mod}(k)={a}_1\cdot {x}_1(k)+{a}_2\cdot {x}_2(k)+{a}_3\cdot {x}_3(k)+{a}_4\cdot {x}_4(k) $$

The method for the gradient-based LSM is a simple iterative procedure which “moves” the point representing unknown coefficients in four-dimensional space in the direction toward the minimum value of the criterion. In this case, the criterion, Q, is calculated as the sum of squared values of the discrepancy e(k) = y(k)−y mod(k):

$$ {A}_{new}=\kern-.2em \left[\begin{array}{c}\hfill A(1)-\gamma \cdot \frac{\varDelta Q\left[A(1),A(2),A(3),A(4)\right]}{\varDelta (1)}\hfill \\ {}\hfill A(2)-\gamma \cdot \frac{\varDelta Q\left[A(1),A(2),A(3),A(4)\right]}{\varDelta (2)}\hfill \\ {}\hfill A(3)-\gamma \cdot \frac{\varDelta Q\left[A(1),A(2),A(3),A(4)\right]}{\varDelta (3)}\hfill \\ {}\hfill A(4)-\gamma \cdot \frac{\varDelta Q\left[A(1),A(2),A(3),A(4)\right]}{\varDelta (4)}\hfill \end{array}\right] $$

where \( \frac{\varDelta Q\left[A(1),A(2),A(3),A(4)\right]}{\varDelta (i)} \) are estimated partial derivatives of the LSM criterion Q with respect to particular coefficients (i = 1,2,3,4) chosen to be 0.0001, and γ > 0, is a scaling factor. Initially, γ is chosen to be 0.02, however, in the case of an unsuccessful step leading to an increase of criterion Q criterion instead of a decrease, the magnitude of gamma is cut in half. This ensures that the procedure will converge.

The results of this procedure were reached after 250 iterations, starting with zero initial conditions. This procedure could be less accurate but also faster if the termination conditions were made less strict. For this termination condition, the change between the newly generated Q and the previous Q needs to be less than .0000001 in absolute. The optimal result was:

$$ A=\kern-.2em \left[\begin{array}{c}\hfill 2.0001\hfill \\ {}\hfill 2.9918\hfill \\ {}\hfill \begin{array}{c}\hfill -2.0001\hfill \\ {}\hfill 5.0235\hfill \end{array}\hfill \end{array}\right] $$

Since the coefficient of determination for this model is 0.9996, this is an excellent model of our linear system.

4.1.3 Exercise 4.1: Problem 3

This problem differs from the previous one because of the additional requirement: all model parameters are to be positive. This condition is achieved by the use of penalty functions added to the original LSM criterion Q. In this problem the criterion to be minimized is:

$$ {Q}_1=Q+{\displaystyle \sum_{i=1}^4{P}_i} $$

where \( Pi=\left\{\begin{array}{c}\hfill 0\kern0.5em \mathrm{if}\ A(i)\ge 0\hfill \\ {}\hfill {10}^{10}\cdot A{(i)}^2\kern0.5em \mathrm{if}\ A(i)<0\hfill \end{array}\right. \), i = 1,2,3,4

The optimal result, with a coefficient of determination of 0.9348, reached after 300 iterations was:

$$ A=\left[\begin{array}{c}\hfill 1.0790\hfill \\ {}\hfill 2.4456\hfill \\ {}\hfill .0009\hfill \\ {}\hfill 4.4795\hfill \end{array}\right] $$

C omparing the coefficient of determination to the one from Problem 2, 0.9348 < 0.9996 Therefore the coefficients found in Problem 2 are a better representation of the actual system. Since the actual system includes a negative coefficient for a3, not allowing negative coefficients in Problem 3 impacted the ability of the optimization to get close to the actual coefficient values.

4.1.4 Exercise 4.2: Problem 1

For this problem, we were given the following transfer function of the controlled plant, and were required to use the Simplex code provided to find the optimal coefficients of a PID controller. The PID controller was configured to use the system error as its input for the controller.

figure g

As could be seen, the optimization criterion, known as “integral-time-error-squared” was chosen. The Simplex procedure began with zero initial coefficient values, and progressively changed these values, minimizing the criterion. All 30 iteration of the Simplex procedure are shown below.

Iteration

k_P

k_I

k_D

Q

1

0.000

0.000

0.000

50.00000

2

0.094

0.024

0.024

38.18000

3

0.024

0.094

0.024

25.61000

4

0.024

0.024

0.094

41.24000

5

0.094

0.094

0.094

24.15000

6

0.141

0.141

0.141

17.33000

7

0.149

0.149

0.031

16.29000

8

0.212

0.212

0.000

10.76000

9

0.157

0.275

0.086

7.86200

10

0.189

0.401

0.118

4.21000

11

0.338

0.409

0.149

3.87000

12

0.495

0.566

0.212

2.06500

13

0.456

0.644

0.079

1.62100

14

0.613

0.896

0.047

0.86220

15

0.652

1.029

0.251

0.72740

16

0.872

1.438

0.377

0.48830

17

1.131

1.532

0.306

0.39070

18

1.603

2.098

0.401

0.29570

19

1.563

2.388

0.338

0.34080

20

2.079

3.054

0.697

0.29080

21

2.813

4.133

1.021

0.26310

22

3.114

4.308

0.796

0.25040

23

4.235

5.743

1.006

0.21720

24

4.203

5.594

1.281

0.19470

25

5.523

7.197

1.752

0.15960

26

6.778

9.284

2.119

0.14560

27

9.365

12.877

2.978

0.11670

28

9.936

13.079

2.802

0.10360

29

13.498

17.552

3.693

0.08105

30

14.689

19.341

4.609

0.08550

The following plots illustrate gradual improvement of the closed-loop step response of the system, iterations 1, 2, 8, 12, 14, 16 are shown below . Technically, the procedure could be terminated after the 16-th iteration when the design requirements were met.

figure h

1

figure i

2

figure j

8

figure k

12

figure l

14

figure m

16

4.1.5 Exercise 4.2: Problem 2

The task is to estimate parameters a 1a 2a 3a 4a 5 of the following model

$$ {y}^{MOD}={a}_1{x}_1{e}^{a_2{x}_2}+{a_3}^{\left({a}_4{x}_3+{a}_5\right)} $$

based on the input–output data presented in the table below. It could be seen that while the Least Squares Method (LSM) is to be applied, due to the nonlinearity of the model, traditional LSM equation is unusable and the LSM criterion,

$$ Q\left({a}_1,\ {a}_2,\ {a}_3,\ {a}_4,\ {a}_5\right)={\displaystyle \sum_i{\left[y(i)-{y}^{MOD}(i)\right]}^2} $$

could be minimized only by a genetic optimization (GO) procedure.

Assume that a “generation” size is 20. To start the procedure, begin with 20 randomly generated sets of 5 coefficients compiled into in a 20 × 5 matrix, with each row representing a particular set of coefficients (an individual). In each generation these 20 “individuals” will become the source of off-spring and mutants. Each combination of two individuals within a generation results in 5 off-spring. Each individual in the generation originates 5 mutants.

It could be seen that this process results in an immense number of new individuals, however, each newly created individual is subjected to the “fitness test” and only the 20 most fit individuals are included in the next generation. Each “next generation” is subjected to the same treatment until some termination conditions are met.

Below are several successive generation created by GO and accompanying values of the coefficient of determination of the resultant model.

Initial generation

a 1

a 2

a 3

a 4

a 5

2.8985

1.1513

1.3472

0.7978

−1.7259

1.6345

0.3528

−3.1390

−0.4051

−1.6175

4.0328

−0.2817

−0.8104

−0.2262

2.0505

0.5651

−0.3717

−1.4612

2.1874

0.2249

0.0178

−2.6064

0.7837

2.0933

0.9262

−0.4143

1.3217

0.6731

−1.0293

0.6581

0.3766

2.1826

2.5247

−1.7790

−0.3017

1.9690

−1.3128

−0.5600

2.6983

−2.0503

1.5223

−1.7655

−1.0972

−6.0455

1.9243

−1.9364

2.2881

−2.5293

1.9482

−1.2985

−0.1199

3.7093

0.4981

0.0415

−0.1648

−2.6940

2.6746

−2.0002

1.0056

−0.6448

−1.6309

3.0015

−1.4742

2.2930

2.2985

−1.6146

3.2141

3.1189

1.3045

−4.4747

3.7037

−0.5679

0.2711

−1.9776

0.4899

1.3725

−0.5816

0.3215

−2.4576

1.0954

0.9418

2.1572

−0.3685

3.4800

−3.1552

−2.9340

−4.9244

−0.0846

0.5385

−1.4570

3.5418

−0.5850

−0.3802

−4.0273

0.3840

0.5160

−4.4928

−0.1777

3.0757

−1.5804

Generation 1

a 1

a 2

a 3

a 4

a 5

Determination coefficient

2.8985

1.1513

1.3472

0.7978

−1.7259

0.8825

2.2881

1.2683

1.3268

0.3294

−0.2899

0.8756

3.1209

1.2110

1.8546

−1.8284

0.2756

0.8755

2.5022

1.2605

0.6157

−0.9998

1.3549

0.8656

1.8744

1.2679

−0.9757

0.6641

2.0549

0.8601

1.1644

1.4379

−1.7683

−1.0123

−0.8917

0.8532

1.6140

1.2957

−0.5244

−0.5290

1.4760

0.8408

0.7947

1.6388

0.9696

−2.4417

0.6111

0.8397

2.0885

1.1947

0.8106

−0.2046

−0.5338

0.8384

0.8033

1.5508

2.2729

−0.0392

−0.5913

0.8352

2.5520

1.1144

0.4245

−0.3246

0.5987

0.8319

1.1761

1.5435

1.4602

−2.2510

−0.0922

0.8282

3.4343

1.0007

−0.5871

0.2609

1.1236

0.8243

1.6577

1.2627

−0.9837

1.3665

−0.4513

0.8215

1.3407

1.4972

−2.5164

0.8116

−2.9722

0.8175

2.9522

1.0467

0.1449

0.5600

1.8093

0.8157

0.6689

1.5793

−0.7417

2.8365

0.1993

0.8074

2.7650

1.0530

1.1006

0.2516

−1.6950

0.7990

1.8029

1.2170

−1.9619

1.3318

−1.5114

0.7959

2.8907

1.2643

0.7140

0.1415

−2.4496

0.7925

Generation 3

a 1

a 2

a 3

a 4

a 5

Determination coefficient

3.2330

1.1311

0.1180

0.1429

−1.5847

0.9203

3.4089

1.1194

0.1505

0.2626

−1.3844

0.9178

3.0811

1.1600

0.1540

0.3674

−1.2171

0.9152

3.2224

1.1584

0.1650

0.2263

−1.4428

0.9142

3.2893

1.1546

0.1817

0.8279

−0.1388

0.9137

2.5298

1.2368

0.0907

0.5090

−0.1884

0.9114

3.0611

1.1398

0.0935

0.0080

−1.5563

0.9112

2.4017

1.2431

0.2474

0.7796

−0.6685

0.9102

3.3596

1.1058

0.1555

0.1667

−1.3748

0.9095

2.8410

1.1452

0.1536

0.0956

−1.7017

0.9089

2.4652

1.2277

0.0785

0.3539

−0.4969

0.9087

2.2753

1.2568

0.2190

0.5816

−0.8525

0.9073

2.3878

1.2545

0.1447

0.5450

−0.3459

0.9068

2.6861

1.1952

0.2399

0.2100

−1.6736

0.9057

3.1428

1.1634

0.2227

0.1615

−1.6702

0.9056

2.6985

1.1850

0.2020

0.1200

−1.6083

0.9054

2.4388

1.2495

0.0313

0.3191

−0.1237

0.9054

3.2899

1.1293

0.2615

0.2999

−1.4908

0.9051

2.3510

1.2336

0.2180

0.3131

−1.4478

0.9048

2.8936

1.1421

0.1960

0.1882

−1.6563

0.9044

Generation 5

a 1

a 2

a 3

a 4

a 5

Determination coefficient

3.2187

1.1474

0.1081

0.1070

−1.5610

0.9243

3.2307

1.1444

0.1065

0.0930

−1.5475

0.9242

3.1887

1.1535

0.1066

0.0969

−1.5458

0.9241

3.1930

1.1516

0.1153

0.0942

−1.6730

0.9241

3.1678

1.1503

0.1164

0.1062

−1.5840

0.9239

3.3344

1.1401

0.1163

0.1289

−1.5773

0.9239

3.2312

1.1458

0.1056

0.0839

−1.5436

0.9239

3.1755

1.1476

0.1139

0.0927

−1.5828

0.9238

3.1045

1.1533

0.1032

0.0814

−1.5745

0.9238

3.1020

1.1555

0.1101

0.0826

−1.5823

0.9238

3.1053

1.1523

0.1109

0.0850

−1.5895

0.9237

3.2088

1.1392

0.1033

0.0831

−1.5563

0.9237

3.3173

1.1454

0.1160

0.1322

−1.5786

0.9236

3.1123

1.1533

0.1164

0.1001

−1.5813

0.9236

3.2996

1.1295

0.1009

0.0858

−1.5604

0.9236

3.3068

1.1395

0.1328

0.1453

−1.6407

0.9236

3.3615

1.1333

0.1098

0.1346

−1.5013

0.9235

3.2392

1.1462

0.1213

0.1365

−1.5729

0.9235

3.2177

1.1370

0.1105

0.0952

−1.5843

0.9235

3.0982

1.1542

0.1172

0.1026

−1.5828

0.9235

Generation 7

a 1

a 2

a 3

a 4

a 5

Determination coefficient

3.2964

1.1409

0.1069

0.1003

−1.5657

0.9244

3.2921

1.1406

0.1063

0.0987

−1.5740

0.9244

3.2906

1.1400

0.1057

0.1014

−1.5538

0.9244

3.2617

1.1426

0.1080

0.1004

−1.5746

0.9244

3.2937

1.1406

0.1141

0.1063

−1.6061

0.9244

3.2497

1.1445

0.1063

0.1002

−1.5612

0.9244

3.2837

1.1424

0.1048

0.0966

−1.5579

0.9244

3.2246

1.1478

0.1122

0.1016

−1.6072

0.9244

3.2764

1.1418

0.1104

0.1047

−1.5810

0.9244

3.2292

1.1473

0.1077

0.1007

−1.5728

0.9244

3.2272

1.1467

0.1149

0.1005

−1.6283

0.9244

3.2825

1.1422

0.1085

0.0975

−1.5793

0.9244

3.2831

1.1400

0.1081

0.1029

−1.5699

0.9244

3.2317

1.1464

0.1090

0.1021

−1.5838

0.9244

3.2291

1.1462

0.1074

0.0996

−1.5691

0.9244

3.2202

1.1473

0.1083

0.1002

−1.5767

0.9244

3.2817

1.1425

0.1073

0.1012

−1.5615

0.9244

3.2629

1.1422

0.1116

0.1037

−1.5985

0.9244

3.2778

1.1426

0.1187

0.1053

−1.6354

0.9244

3.2414

1.1462

0.1072

0.1030

−1.5708

0.9244

Generation 9

a 1

a 2

a 3

a 4

a 5

Determination coefficient

3.2931

1.1403

0.1067

0.0996

−1.5671

0.9244

3.2946

1.1402

0.1062

0.0997

−1.5652

0.9244

3.2915

1.1403

0.1077

0.1000

−1.5749

0.9244

3.2941

1.1402

0.1060

0.0996

−1.5644

0.9244

3.2921

1.1404

0.1069

0.0999

−1.5686

0.9244

3.2934

1.1404

0.1059

0.0986

−1.5632

0.9244

3.2905

1.1404

0.1056

0.0991

−1.5608

0.9244

3.2936

1.1404

0.1113

0.1011

−1.5986

0.9244

3.2937

1.1404

0.1064

0.0998

−1.5654

0.9244

3.2936

1.1402

0.1061

0.1000

−1.5628

0.9244

3.2917

1.1402

0.1062

0.0996

−1.5629

0.9244

3.2895

1.1405

0.1055

0.0987

−1.5605

0.9244

3.2943

1.1403

0.1063

0.1001

−1.5638

0.9244

3.2900

1.1404

0.1057

0.0986

−1.5612

0.9244

3.2913

1.1403

0.1060

0.0996

−1.5622

0.9244

3.2918

1.1404

0.1064

0.0999

−1.5648

0.9244

3.2902

1.1402

0.1056

0.0985

−1.5612

0.9244

3.2901

1.1406

0.1072

0.0997

−1.5719

0.9244

3.2918

1.1406

0.1057

0.0988

−1.5631

0.9244

3.2933

1.1405

0.1065

0.0999

−1.5674

0.9244

After 9 iterations of the GO procedure stopped, and the resultant value of the coefficient of determination was 0.9244 for coefficients [3.2931, 1.1403, 0.1067, 0.0996, −1.5671], and the model expression is: y MOD = \( 3.2931{x}_1{e}^{1.1403{x}_2}+{0.1067}^{0.0996{x}_3-1.5671} \)

4.1.6 Exercise 4.3: Problem 1

Conditional optimization of Process IV:

If \( {x}_4=\left[10,40\right] \)

  • Choose u 4 = 2

  • Cost = 4

If \( {x}_4=\left(40,70\right] \)

  • Choose u 4 = 3

  • Cost = 4

If \( {x}_4=\left(70,100\right] \)

  • Choose u 4 = 3

  • Cost = 3

Conditional optimization of Process III and Process IV:

If \( {x}_3=\left[10,40\right] \)

  • If u 3 = 1, cost = 16 + cost(x 4 = 13) = 16 + 4 = 20

  • If u 3 = 2, cost = 18 + cost(x 4 = 45) = 18 + 4 = 22

  • If u 3 = 3, cost = 9 + cost(x 4 = 92) = 9 + 3 = 12 (optimal)

  • Choose u 3 = 3

  • Cost = 12

If \( {x}_3=\left(40,70\right] \)

  • If u 3 = 1, cost = 13 + cost(x 4 = 48) = 13 + 4 = 17

  • If u 3 = 2, cost = 17 + cost(x 4 = 18) = 17 + 4 = 21

  • If u 3 = 3, cost = 8 + cost(x 4 = 68) = 8 + 4 = 12 (optimal)

  • Choose u 3 = 3

  • Cost = 12

If \( {x}_3=\left(70,100\right] \)

  • If u 3 = 1, cost = 10 + cost(x 4 = 81) = 10 + 3 = 13

  • If u 3 = 2, cost = 14 + cost(x 4 = 66) = 14 + 4 = 18

  • If u 3 = 3, cost = 6 + cost(x 4 = 21) = 6 + 4 = 10 (optimal)

  • Choose u 3 = 3

  • Cost = 10

Conditional optimization of Process II, Process III and Process IV:

If \( {x}_2=\left[10,40\right] \)

  • If u 2 = 1, cost = 13 + cost(x 3 = 65) = 13 + 12 = 25 (optimal)

  • If u 2 = 2, cost = 21 + cost(x 3 = 44) = 21 + 12 = 33

  • If u 2 = 3, cost = 33 + cost(x 3 = 74) = 33 + 10 = 43

  • Choose u 2 = 1

  • Cost = 25

If \( {x}_2=\left(40,70\right] \)

  • If u 2 = 1, cost = 15 + cost(x 3 = 66) = 15 + 12 = 27 (optimal)

  • If u 2 = 2, cost = 22 + cost(x 3 = 50) = 22 + 12 = 33

  • If u 2 = 3, cost = 37 + cost(x 3 = 81) = 37 + 10 = 47

  • Choose u 2 = 1

  • Cost = 27

If \( {x}_2=\left(70,100\right] \)

  • If u 2 = 1, cost = 18 + cost(x 3 = 78) = 18 + 10 = 28 (optimal)

  • If u 2 = 2, cost = 28 + cost(x 3 = 62) = 28 + 12 = 40

  • If u 2 = 3, cost = 40 + cost(x 3 = 96) = 40 + 10 = 50

  • Choose u 2 = 1

  • Cost = 28

Conditional optimization of Process I, Process II, Process III, and Process IV:

If \( {x}_1=\left[10,40\right] \)

  • If u 1 = 1, cost = 25 + cost(x 2 = 25) = 25 + 25 = 50 (optimal)

  • If u 1 = 2, cost = 28 + cost(x 2 = 45) = 28 + 27 = 55

  • If u 1 = 3, cost = 25 + cost(x 2 = 55) = 25 + 27 = 52

  • Choose u 1 = 1

  • PATH: u 1 = 1 \( \to\ {u}_2 \) = 1 \( \to\ {u}_3 \) = 3 \( \to\ {u}_4 \) = 3

  • Cost = 50

If \( {x}_1=\left(40,70\right] \)

  • If u 1 = 1, cost = 27 + cost(x 2 = 37) = 27 + 25 = 52 (optimal)

  • If u 1 = 2, cost = 33 + cost(x 2 = 48) = 33 + 27 = 60

  • If u 1 = 3, cost = 27 + cost(x 2 = 63) = 27 + 28 = 55

  • Choose u 1 = 1

  • PATH: u 1 = 1 \( \to\ {u}_2 \) = 1 \( \to\ {u}_3 \) = 3 \( \to\ {u}_4 \) = 3

  • Cost = 52

If \( {x}_1=\left(70,100\right] \)

  • If u 1 = 1, cost = 22 + cost(x 2 = 45) = 22 + 27 = 49 (optimal)

  • If u 1 = 2, cost = 24 + cost(x 2 = 58) = 24 + 27 = 51

  • If u 1 = 3, cost = 25 + cost(x 2 = 79) = 25 + 28 = 53

  • Choose u 1 = 1

  • PATH: u 1 = 1 \( \to\ {u}_2 \) = 1 \( \to\ {u}_3 \) = 3 \( \to\ {u}_4 \) = 3

  • Cost = 49

4.1.6.1 Optimal Plan

Since x = 37, the optimal path is u 1 = 1 \( \to\ {u}_2 \) = 1 \( \to\ {u}_3 \) = 3 \( \to\ {u}_4 \) = 3 and the cost = 50.

4.1.7 Exercise 4.3: Problem 2

Conditional optimization of particular stages of the process starting from the last stage:

Stage 5 → 6

  • If at A5 → A6 − Cost = 8 (optimal)

  • If at B5 → A6 − Cost = 7 (optimal)

Stage 4 → 5

  • If at A4 → A5 – Cost = 15 + 8 = 23

  •     → B5 − Cost = 10 + 7 = 17 (optimal)

  • If at B4 → A5 – Cost = 19 + 8 = 27

  •     → B5 − Cost = 14 + 7 = 21 (optimal)

  • If at C4 → A5 – Cost = 16 + 8 = 24

  •     → B5 − Cost = 13 + 7 = 20 (optimal)

Stage 3 → 4

  • If at A3 → A4 – Cost = 6 + 17 = 23

  •     → B4 – Cost = 4 + 21 = 25

  •     → C4 − Cost = 2 + 20 = 22 (optimal)

  • If at B3 → A4 − Cost = 7 + 17 = 24 (optimal)

  •     → B4 – Cost = 4 + 21 = 25

  •     → C4 – Cost = 12 + 20 = 32

  • If at C3 → A4 − Cost = 5 + 17 = 22 (optimal)

  •     → B4 − Cost = 3 + 21 = 24

  •     → C4 − Cost = 7 + 20 = 27

Stage 2 → 3

  • If at A2 → A3 – Cost = 2 + 22 = 24

  •     → B3 – Cost = 3 + 24 = 27

  •     → C3 − Cost = 1 + 22 = 23 (optimal)

  • If at B2 → A3 – Cost = 9 + 22 = 31

  •     → B3 – Cost = 2 + 24 = 26

  •     → C3 − Cost = 2 + 22 = 24 (optimal)

  • If at C2 → A3 – Cost = 6 + 22 = 28

  •     → B3 – Cost = 4 + 24 = 28

  •     → C3 − Cost = 3 + 22 = 25 (optimal)

  • If at D2 → A3 − Cost = 3 + 22 = 25 (optimal)

  •     → B3 – Cost = 3 + 24 = 27

  •     → C3 – Cost = 4 + 22 = 26

Stage 1 → 2

  • If at A1 → A2 – Cost = 7 + 23 = 30

  •     → B2 − Cost = 4 + 24 = 28 (optimal)

  •     → C2 – Cost = 5 + 25 = 30

  •     → D2 – Cost = 6 + 25 = 31

4.1.7.1 Optimal Path

A1 → B2 → C3 → A4 → B5 → A6, Cost: 28

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skormin, V.A. (2016). Methods and Models of Optimization. In: Introduction to Process Control. Springer Texts in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-319-42258-9_4

Download citation

Publish with us

Policies and ethics