Skip to main content

Development and Experimental Validation of Thermally Stable Unimorph SMP Actuators Incorporating Transverse Curvature

  • Conference paper
  • First Online:
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9

Abstract

Shape memory polymers (SMP) have the potential to be utilized as a lightweight, solid state actuator in modern reconfigurable structures including as deployment systems for satellite solar panels or morphing aircraft wings. This paper is predominantly focused on the use of Veriflex-S®, a thermally activated SMP, and bi-directional carbon-fiber-reinforced polymer (CFRP) in a flexural unimorph actuator configuration. The disadvantage of a unimorph composite actuator (UCA) as opposed to an actuator with a SMP matrix or a SMP composite sandwich structure is that UCA behaves like a bimaterial strip when heated or cooled. This means that large temperature swings, like those seen in space environments, will result in large out-of-plane curvature. These deformations can greatly affect the effectiveness of reconfigurable structures. This paper explains the development and experimental validation of a closed-form solution for a thermally stable unimorph actuator which exhibits minimal out-of-plane deformation when subjected to a thermal stimulus. A closed-form solution of the SMP actuator was developed and a set of UCA actuators were experimentally evaluated utilizing digital image correlation (DIC) to validate the conceptual model created. The experimental results indicate that the closed-form solution appears to be accurate as the maximum out-of-plane deformations for several non-ideal thermally stable actuators were less than 0.6 mm for a 65 °C temperature change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

c:

Polymer width

CF:

Carbon fiber

CFRP:

Carbon-fiber-reinforced polymer

COV:

Coefficient of variation

CTE:

Coefficient of thermal expansion

L:

Actuator length

MAV:

Micro air vehicle

NA:

Neutral axis

s:

Substrate width

SMP:

Shape memory polymer

t:

Polymer thickness

Tg :

Glass transition temperature

u, v, w:

Lengthwise, widthwise, and vertical displacements

UCA:

Unimorph composite actuator

x, y, z:

Lengthwise, widthwise, and vertical coordinates

ρ:

Substrate radius of curvature

References

  1. Beloshenko, V.A., Varyukhin, V.N., Voznyak, Y.V.: The shape memory effect in polymers. Russ. Chem. Rev. 74, 265–283 (2005). doi:10.1070/RC2005v074n03ABEH000876

    Article  Google Scholar 

  2. Leng, J., Lu, H., Liu, Y., et al.: Shape-memory polymers—a class of novel smart materials. MRS Bull. 34(11), 848–855 (2009)

    Article  Google Scholar 

  3. Lan, X., Liu, Y., Lu, H., et al.: Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater. Struct. 18, 024002 (2009). doi:10.1088/0964-1726/18/2/024002

    Article  Google Scholar 

  4. Carrell, J., Tate, D., Wang, S., Zhang, H.-C.: Shape memory polymer snap-fits for active disassembly. J. Clean. Prod. 19, 2066–2074 (2011). doi:10.1016/j.jclepro.2011.06.027

    Article  Google Scholar 

  5. Cantrell, J.T., Ifju, P.G.: Novel design concepts for micro Air vehicles and unimorph composite actuators incorporating transverse curvature. In: Tandon, G.P., Baur, J.W., McClung, A.J.W. (eds.) Shape-Memory Polymers for Aerospace Applications: Novel Synthesis, Modeling, Characterization and Design, pp. 1–22. DEStech Publications, Lancaster (2015)

    Google Scholar 

  6. Joo, J., Smyers, B., Beblo, R., et al.: Load-bearing multi-functional structure with direct thermal harvesting for thermally activated reconfigurable wing design. In: International Conference on Composite Materials, pp. 1–6. Society of Composite Materals, Jeju (2011)

    Google Scholar 

  7. McClung, A.J.W., Tandon, G.P., Baur, J.W.: Strain rate- and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech. Time-Depend. Mater. 16, 205–221 (2011). doi:10.1007/s11043-011-9148-7

    Article  Google Scholar 

  8. McClung, A.J.W., Tandon, G.P., Goecke, K.E., Baur, J.W.: Non-contact technique for characterizing full-field surface deformation of shape memory polymers at elevated and room temperatures. Polym. Test. 30, 140–149 (2011). doi:10.1016/j.polymertesting.2010.11.010

    Article  Google Scholar 

  9. McClung, A.J.W., Tandon, G.P., Baur, J.W.: Fatigue cycling of shape memory polymer resin. In: Proulx, T. (ed.) Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, pp. 119–127. Springer, New York (2011)

    Google Scholar 

  10. Klesa, J., Placet, V., Foltête, E., Collet, M.: Experimental evaluation of the rheological properties of Veriflex® shape memory polymer. ESOMAT 2009—8th European Symposium on Martensitic Transformations (2009). doi:10.1051/esomat/200904006

    Google Scholar 

  11. Tandon, G.P., Goecke, K., Cable, K., Baur, J.: Durability assessment of styrene- and epoxy-based shape-memory polymer resins. J. Intell. Mater. Syst. Struct. 20, 2127–2143 (2009). doi:10.1177/1045389X09348255

    Article  Google Scholar 

  12. Nahid, M.N.H., Wahab, M.A.A., Lian, K.: Degradation of shape memory polymer due to water and diesel fuels. In: Proulx, T. (ed.) Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, vol. 3, pp. 37–48. Society of Experimental Mechanics, New York (2011)

    Google Scholar 

  13. McClung, A.J.W., Tandon, G.P., Baur, J.W.: Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mech. Time-Depend. Mater. 17, 39–52 (2011). doi:10.1007/s11043-011-9157-6

    Article  Google Scholar 

  14. Fulcher, J.T., Karaca, H.E., Tandon, G.P., Lu, Y.C.: Thermomechanical and shape memory properties of thermosetting shape memory polymer under compressive loadings. J. Appl. Polym. Sci. 129, 1096–1103 (2012). doi:10.1002/app.38791

    Article  Google Scholar 

  15. Cantrell, J.T., Ifju, P.G.: Unimorph shape memory polymer actuators incorporating transverse curvature in the substrate. In: 2014 Annual Conference on Experimental and Applied Mechanics, pp. 1–10. Springer International Publishing, Greenville, (2014)

    Google Scholar 

  16. Cantrell, J.T., Ifju, P.G.: Experimental characterization of unimorph shape memory polymer actuators incorporating transverse curvature in the substrate. Exp. Mech. 55, 1395–1409 (2015). doi:10.1007/s11340-015-0035-z

    Article  Google Scholar 

  17. Cantrell, J.T., Van Hall, J.R., Young, A.J., Ifju, P.G.: Experimental characterization of shape fixity in transversely curved unimorph shape memory polymer actuators. In: 2015 Annual Conference on Experimental and Applied Mechanics, pp. 1–9. Springer International Publishing, Costa Mesa (2015)

    Google Scholar 

  18. Seffen, K.A.: On the behavior of folded tape-springs. J. Appl. Mech. 68, 369 (2001). doi:10.1115/1.1365153

    Article  MATH  Google Scholar 

  19. Seffen, K.A., You, Z., Pellegrino, S.: Folding and deployment of curved tape springs. Int. J. Mech. Sci. 42, 2055–2073 (2000). doi:10.1016/S0020-7403(99)00056-9

    Article  MATH  Google Scholar 

  20. Seffen, K.A., Pellegrino, S.: Deployment dynamics of tape springs. Proc. R Soc. A Math. Phys. Eng. Sci. 455, 1003–1048 (1999). doi:10.1098/rspa.1999.0347

    Article  MathSciNet  MATH  Google Scholar 

  21. Pellegrino, S.: Bistable shell structures. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–8. AIAA, Austin (2005)

    Google Scholar 

  22. Soykasap, O., Pellegrino, S., Howard, P., Notter, M.: Folding large antenna tape spring. J. Spacecr. Rocket. 45, 560–567 (2008). doi:10.2514/1.28421

    Article  Google Scholar 

  23. Soykasap, O., Pellegrino, S., Howard, P., Notter, M.: Tape spring large deployable antenna. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1–4 May 2006, pp. 1–12. Newport, Rhode Isl. Newport, Rhode Island (2006)

    Google Scholar 

  24. Watt, A.M., Pellegrino, S.: Tape-spring rolling hinges. In: 36th Aerospace Mechanisms Symposium, pp. 1–14. Cleveland (2002)

    Google Scholar 

  25. Mallikarachchi, H.M.Y.C., Pellegrino, S.: Optimized designs of composite booms with integral tape-spring hinges. In: Proceeding of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–16. Orlando (2010)

    Google Scholar 

  26. Tan, L.T., Soykasap, O., Pellegrino, S.: Design & manufacture of stiffened spring-back reflector demonstrator. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–12. American Institute of Aeronautics and Astronautics, Austin (2005)

    Google Scholar 

  27. Mallikarachchi, H.M.Y.C., Pellegrino, S.: Quasi-static folding and deployment of ultrathin composite tape-spring hinges. J. Spacecr. Rocket. 48, 187–198 (2011). doi:10.2514/1.47321

    Article  Google Scholar 

  28. Yee, J.C.H., Soykasap, Ö., Pellegrino, S.: Carbon fibre reinforced plastic tape springs. In: 45th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, pp. 1–9. American Institute of Aeronautics and Astronautics, Palm Springs (2004)

    Google Scholar 

  29. Kwok, K., Pellegrino, S.: Folding, stowage, and deployment of viscoelastic tape springs. AIAA J. 51, 1908–1918 (2013). doi:10.2514/1.J052269

    Article  Google Scholar 

  30. Yee, J.C.H., Pellegrino, S.: Composite tube hinges. J. Aerosp. Eng. 18, 224–231 (2005)

    Article  Google Scholar 

  31. Murphey, T.W., Jeon, S., Biskner, A., Sanford, G.: Deployable booms and antennas using bi-stable tape-springs. In: 24th Annual Conference on Small Satellites, pp. 1–7. Logan (2010)

    Google Scholar 

  32. Soykasap, O., Karakaya, S., Turkmen, D.: Curved large tape springs for an ultra-thin shell deployable reflector. J. Reinf. Plast. Compos. 31, 691–703 (2012). doi:10.1177/0731684412444018

    Article  Google Scholar 

  33. Sickinger, C., Herbeck, L., Breitbach, E.: Structural engineering on deployable CFRP booms for a solar propelled sailcraft. Acta Astronaut. 58, 185–196 (2006). doi:10.1016/j.actaastro.2005.09.011

    Article  Google Scholar 

  34. Block, J., Straubel, M., Wiedemann, M.: Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astronaut. 68, 984–992 (2011). doi:10.1016/j.actaastro.2010.09.005

    Article  Google Scholar 

  35. Soykasap, Ö.: Analysis of tape spring hinges. Int. J. Mech. Sci. 49, 853–860 (2007). doi:10.1016/j.ijmecsci.2006.11.013

    Article  Google Scholar 

  36. Soykasap, Ö.: Deployment analysis of a self-deployable composite boom. Compos. Struct. 89, 374–381 (2009). doi:10.1016/j.compstruct.2008.08.012

    Article  Google Scholar 

  37. Roh, J.-H., Kim, H.-J., Bae, J.-S.: Shape memory polymer composites with woven fabric reinforcement for self-deployable booms. J. Intell. Mater. Syst. Struct. 25, 2256–2266 (2014). doi:10.1177/1045389X14544148

    Article  Google Scholar 

  38. Shi, G.-H., Yang, Q.-S., He, X.Q.: Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect. Smart Mater. Struct. 22, 125018 (2013). doi:10.1088/0964-1726/22/12/125018

    Article  Google Scholar 

  39. Yang, H., Wang, L.Y.: Thermomechanical analysis of shape-memory composite tape spring. Appl. Compos. Mater. 20, 287–301 (2012). doi:10.1007/s10443-012-9271-x

    Article  Google Scholar 

  40. Li, Z., Song, W., Wang, Z.: Numerical and theoretical studies of the buckling of shape memory tape spring. Tech. Sci. Press 17, 133–143 (2011)

    Google Scholar 

  41. Sutton, M.A., Turner, J.L., Bruck, H.A., Chae, T.A.: Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Exp. Mech. 31, 168–177 (1991)

    Article  Google Scholar 

  42. Sutton, M.A.: Springer Handbook of Experimental Solid Mechanics. Department of Mechanical Engineering, The Johns Hopkins University, Baltimore (2008)

    Google Scholar 

  43. Sutton, M.A., Orteu, J.J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York (2009)

    Google Scholar 

  44. Zwillinger, D.: CRC Standard Mathematical Tables and Formulae, 31st ed, pp. 341–343. CRC Press Company, Boca Raton (2003)

    Google Scholar 

  45. Beer, F.P., Johnston Jr., E.R., DeWolf, J.T.: Mechanics of Materials, 4th edn. McGraw-Hill, New York (2006)

    Google Scholar 

  46. Terzak, J.C.: Modeling of microvascular shape memory composites. Youngstown State University (2013)

    Google Scholar 

  47. Volk, B.L.: Thermomechanical Characterization and modeling of shape memory polymers. Texas A&M University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. Cantrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Cantrell, J.T., Ifju, P.G. (2017). Development and Experimental Validation of Thermally Stable Unimorph SMP Actuators Incorporating Transverse Curvature. In: Quinn, S., Balandraud, X. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42255-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42255-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42254-1

  • Online ISBN: 978-3-319-42255-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics