Advertisement

Stiffness Heterogeneity of Multiply Paperboard Examined with VFM

  • Anton Hagman
  • J. M. ConsidineEmail author
  • Mikael Nygårds
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Mechanical heterogeneity of a multiply paperboard was characterized in uniaxial tension using DIC and VFM. The specimen was divided into three subregions based on axial strain magnitude. VFM analysis showed that the subregions had stiffnesses and Poisson’s ratio’s that varied in a monotonically decreasing fashion, but with the stiffness differences between subregions increasing with applied tensile stress. An Equilibrium Gap analysis showed improved local equilibrium when comparing a homogeneous analysis with the subregion analysis. Although only a single specimen was examined, results suggest that high stiffness regions provide only marginal improvement of mechanical behavior. The analysis also showed that even though the subregions themselves were non-contiguous, their mechanical behavior was similar.

Keywords

VFM DIC Stiffness Paperboard Heterogeneity 

References

  1. 1.
    Axelrad, D.R., Rezai, K., Atack, D.: Probabilistic mechanics of fibrous structures. J. Appl. Math. Phys. (ZAMP) 35(4), 497–513 (1984)Google Scholar
  2. 2.
    de Oliveira, R., Mark, R.E., Perkins, R.W.: Evaluation of the effects of heterogeneous structure on strain distribution in low density papers. In: Perkins, R.W. (ed.) Mechanics of Wood and Paper Materials, AMD Vol. 112, MD Vol. 23, pp. 37–61. American Society of Mechanical Engineers, New York (1990)Google Scholar
  3. 3.
    Hanada, A., Onabe, F.: Analysis of physical properties of paper by interference holography (I) Construction of measuring system for local strain distribution of paper sheets. Japan Tappi J. 47(5), 645–652 (1993)CrossRefGoogle Scholar
  4. 4.
    Hanada, A., Onabe, F.: Analysis of physical properties of paper by interference holography (II) Visualization of local strain distribution of paper sheets through tensile testing process. Japan Tappi J. 47(6), 761–766 (1993)CrossRefGoogle Scholar
  5. 5.
    Korteoja, M.J., Lukkarinen, A., Kaski, K., Gunderson, D.E., Dahlke, J.L., Niskanen, K.J.: Local strain fields in paper. Tappi J. 79, 217–224 (1996)Google Scholar
  6. 6.
    Korteoja, M., Salminen, L.I., Niskanen, K.J., Alava, M.J.: Strength distribution in paper. Mater. Sci. Eng. A-Struct. 248(1), 173–180 (1998)CrossRefGoogle Scholar
  7. 7.
    Ostoja-Starzewski, M., Castro, J.: Random formation, inelastic response and scale effects in paper. Phil. Trans. R. Soc. London, Ser. A 361(1806), 965–985 (2003)Google Scholar
  8. 8.
    Yamauchi, T., Murakami, K.: Observation of deforming and fracturing processes of paper by use of thermography. In: Products of Papermaking, Transactions of the Xth Fundamental Research Symposium, Oxford, UK, vol. 10, pp. 825–847. FRC, Oxford (1993)Google Scholar
  9. 9.
    Pierron, F., Grédiac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-Field Deformation Measurements. Springer, New York (2012)CrossRefGoogle Scholar
  10. 10.
    Hagman, A., Nygårds, M.: Investigation of sample-size effects on in-plane tensile testing of paperboard. Nord. Pulp Pap. Res. J. 27(2), 295–304 (2012)CrossRefGoogle Scholar
  11. 11.
    Grédiac, M., Vautrin, A.: A new method for determination of bending rigidities of thin anisotropic plates. J. Appl. Mech. 57(4), 964–968 (1990)CrossRefGoogle Scholar
  12. 12.
    Moulart, R., Avril, S., Pierron, F.: Identification of the through-thickness rigidities of a thick laminated composite tube. Compos. Part A-Appl. Sci. 37(2), 326–336 (2006)CrossRefGoogle Scholar
  13. 13.
    Devivier, C., Pierron, F., Wisnom, M.R.: Impact damage detection in composite plates using deflectometry and the Virtual Fields Method. Compos. Part A-Appl. Sci. 48, 201–218 (2013)CrossRefGoogle Scholar
  14. 14.
    Ladeveze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20(3), 485–509 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lakes, R.: Foam structures with a negative Poisson’s Ratio. Science 235(4792), 1038–1040 (1987)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2017

Authors and Affiliations

  • Anton Hagman
    • 1
  • J. M. Considine
    • 2
    Email author
  • Mikael Nygårds
    • 3
  1. 1.Graduate StudentKTH and BiMaC InnovationStockholmSweden
  2. 2.Materials Research EngineerUSDA Forest Service, Forest Products LaboratoryMadisonUSA
  3. 3.Research ManagerInnventia and BiMaC InnovationStockholmSweden

Personalised recommendations