Skip to main content

Residual Stress Measurement of Full-Scale Jet-Engine Bearing Elements Using the Contour Method

  • Conference paper
  • First Online:
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9

Abstract

Compressive residual stresses provide a well-known advantage to the fatigue life of bearing materials under rolling contact fatigue (RCF), but the stresses change under fatigue loading and may later contribute to failures. Previous measurements of the depth-wise distribution of residual stresses in post-fatigue bearings with X-rays involved the time consuming process of etching to determine subsurface stresses and only in limited locations. By contrast, the contour method determines the 2D residual stress map over a full cross section. The method involves the sectioning of the part using Electrical Discharge Machining, measuring the out of plane displacements of the exposed cross section, and using the afforded field as boundary conditions on a finite element model of the component to back calculate the causative residual stress. For this investigation, the residual hoop stresses in the split inner rings of the main shaft bearing assembly of an aircraft jet engine was mapped using the contour method. Prior to measurement, the full-scale bearing made of hardened AISI M50 was subjected to RCF during engine operation. In this talk, the unique challenges of the particular measurements are discussed. The tested bearings showed effectively no residual stresses induced by the RCF, probably because they were conservatively removed from service prior to sufficient cyclic loading. A more highly loaded bearing will be measured in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Withers, P.J.: Residual stress and its role in failure. Rep. Prog. Phys. 70(12), 2211–2264 (2007)

    Article  Google Scholar 

  2. James, M.N.: Residual stress influences on structural reliability. Eng. Fail. Anal. 18(8), 1909–1920 (2011)

    Article  Google Scholar 

  3. Liu, K.K., Hill, M.R.: The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons. Tribol. Int. 42(9), 1250–1262 (2009)

    Article  MathSciNet  Google Scholar 

  4. Edwards, L., Smith, M.C., Turski, M., Fitzpatrick, M.E., Bouchard, P.J.: Advances in residual stress modeling and measurement for the structural integrity assessment of welded thermal power plant. Adv. Mater. Res. 41–42, 391–400 (2008)

    Article  Google Scholar 

  5. Aydiner, C.C., Ustundag, E., Prime, M.B., Peker, A.: Modeling and measurement of residual stresses in a bulk metallic glass plate. J. Non Cryst. Solids 316(1), 82–95 (2003)

    Article  Google Scholar 

  6. Tanner, D.A., Robinson, J.S.: Modelling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products. Finite Elem. Anal. Des. 39(5/6), 369–386 (2003)

    Article  Google Scholar 

  7. Yaghi, A.H., Hilson, G., Simandjuntak, S., Flewitt, P.E.J., Pavier, M.J., Smith, D.J., Hyde, T.H., Becker, A.A., Sun, W.: A comparison between measured and modeled residual stresses in a circumferentially butt-welded P91 steel pipe. J. Press. Vessel. Technol. 132(1), 011206 (2010). doi:10.1115/1.4000347

    Article  Google Scholar 

  8. Rolph, J., Preuss, M., Iqbal, N., Hofmann, M., Nikov, S., Hardy, M.C., Glavicic, M.G., Ramanathan, R., Evans, A.: Residual stress evolution during manufacture of aerospace forgings. In: Huron, E.S., Reed, R.C., Hardy, M.C., et al. (eds.) Superalloys 2012, pp. 881–891. Wiley, Hoboken (2012). doi:10.1002/9781118516430.ch97

    Chapter  Google Scholar 

  9. Dai, H., Francis, J.A., Withers, P.J.: Prediction of residual stress distributions for single weld beads deposited on to SA508 steel including phase transformation effects. Mater. Sci. Technol. 26, 940–949 (2010). doi:10.1179/026708309x12459430509454

    Article  Google Scholar 

  10. DeWald, A.T., Hill, M.R.: Eigenstrain based model for prediction of laser peening residual stresses in arbitrary 3D bodies. Part 1: model description. J. Strain Anal. Eng. Des. 44(1), 1–11 (2009)

    Article  Google Scholar 

  11. Prime, M.B., Prantil, V.C., Rangaswamy, P., Garcia, F.P.: Residual stress measurement and prediction in a hardened steel ring. Mater. Sci. Forum 347–349, 223–228 (2000)

    Article  Google Scholar 

  12. Muránsky, O., Hamelin, C.J., Smith, M.C., Bendeich, P.J., Edwards, L.: The role of plasticity theory on the predicted residual stress field of weld structures. Mater. Sci. Forum 772, 65–71 (2014)

    Article  Google Scholar 

  13. Carlone, P., Palazzo, G.S., Pasquino, R.: Finite element analysis of the steel quenching process: temperature field and solid–solid phase change. Comput. Math. Appl. 59(1), 585–594 (2010). doi:10.1016/j.camwa.2009.06.006

    Article  MathSciNet  MATH  Google Scholar 

  14. Tanner, D.A., Robinson, J.S.: Residual stress prediction and determination in 7010 aluminum alloy forgings. Exp. Mech. 40(1), 75–82 (2000). doi:10.1007/bf02327551

    Article  Google Scholar 

  15. Ismonov, S., Daniewicz, S.R., Newman, J.J.C., Hill, M.R., Urban, M.R.: Three dimensional finite element analysis of a split-sleeve cold expansion process. J. Eng. Mater. Technol. 131(3), 031007 (2009). doi:10.1115/1.3120392

    Article  Google Scholar 

  16. Carlone, P., Palazzo, G.S.: Experimental analysis of the influence of process parameters on residual stress in AA2024-T3 friction stir welds. Key Eng. Mater. 504–506, 753–758 (2012). doi:10.4028/www.scientific.net/KEM.504-506.753

    Article  Google Scholar 

  17. Kaiser, R., Stefenelli, M., Hatzenbichler, T., Antretter, T., Hofmann, M., Keckes, J., Buchmayr, B.: Experimental characterization and modelling of triaxial residual stresses in straightened railway rails. J. Strain Anal. Eng. Des. 50(3), 190–198 (2015). doi:10.1177/0309324714560040

    Article  Google Scholar 

  18. Xie, P., Zhao, H., Wu, B., Gong, S.: Evaluation of residual stresses relaxation by post weld heat treatment using contour method and X-ray diffraction method. Exp. Mech. 55(7), 1329–1337 (2015). doi:10.1007/s11340-015-0040-2

    Article  Google Scholar 

  19. Zhang, Z., Yang, Y., Li, L., Chen, B., Tian, H.: Assessment of residual stress of 7050-T7452 aluminum alloy forging using the contour method. Mater. Sci. Eng. A 644, 61–68 (2015). doi:10.1016/j.msea.2015.07.018

    Article  Google Scholar 

  20. Vrancken, B., Cain, V., Knutsen, R., Van Humbeeck, J.: Residual stress via the contour method in compact tension specimens produced via selective laser melting. Scr. Mater. 87, 29–32 (2014). doi:10.1016/j.scriptamat.2014.05.016

    Article  Google Scholar 

  21. Sadeghi, F., Jalalahmadi, B., Slack, T.S., Raje, N., Arakere, N.K.: A review of rolling contact fatigue. J. Tribol. 131(4), 041403 (2009). doi:10.1115/1.3209132

    Article  Google Scholar 

  22. Voskamp, A.P., Österlund, R., Becker, P.C., Vingsbo, O.: Gradual changes in residual stress and microstructure during contact fatigue in ball bearings. Met. Technol. 7(1), 14–21 (1980). doi:10.1179/030716980803286676

    Article  Google Scholar 

  23. Österlund, R., Vingsbo, O.: Phase changes in fatigued ball bearings. Metall. Trans. A 11(5), 701–707 (1980). doi:10.1007/bf02661199

    Article  Google Scholar 

  24. Voskamp, A.P.: Material response to rolling contact loading. J. Tribol. 107(3), 359–364 (1985). doi:10.1115/1.3261078

    Article  Google Scholar 

  25. Palmgren, A.: Ball and roller bearing engineering. SKF Industries, Philadelphia (1959)

    Google Scholar 

  26. Lundberg, G., Palmgren, A.: Dynamic capacity of roller bearings, vol. 196. Generalstabens litografiska anstalts förlag, Stockholm (1947)

    Google Scholar 

  27. Lunberg, G., Palmgren, A.: Dynamic capacity of roller bearings. Acta Polytech. Mech. Eng. Ser. 2, 96 (1952)

    Google Scholar 

  28. ISO. Rolling bearing–dynamic load ratings and rating life. ISO (2007)

    Google Scholar 

  29. Zaretsky, E.V.: STLE life factors for rolling bearings. STLE Special Publication SP (1992)

    Google Scholar 

  30. Londhe, N.D., Arakere, N.K., Haftka, R.T.: Reevaluation of rolling element bearing load-life equation based on fatigue endurance data. Tribol. Trans. 58(5), 815–828 (2015). doi:10.1080/10402004.2015.1021943

    Article  Google Scholar 

  31. Voskamp, A.P., Mittemeijer, E.J.: State of residual stress induced by cyclic rolling contact loading. Mater. Sci. Technol. 13(5), 430–438 (1997). doi:10.1179/mst.1997.13.5.430

    Article  Google Scholar 

  32. Schajer, G.S.: Practical residual stress measurement methods. Wiley, Chichester (2013)

    Book  Google Scholar 

  33. Holden, T.M.: Neutron diffraction. In: Schajer, G.S. (ed.) Practical Residual Stress Measurement Methods, pp. 195–223. Wiley, Chichester (2013). doi:10.1002/9781118402832.ch8

    Chapter  Google Scholar 

  34. Schajer, G.S., Whitehead, P.S.: Hole drilling and ring coring. In: Schajer, G.S. (ed.) Practical Residual Stress Measurement Methods, pp. 29–64. Wiley, Chichester (2013)

    Chapter  Google Scholar 

  35. Pagliaro, P., Prime, M.B., Robinson, J.S., Clausen, B., Swenson, H., Steinzig, M., Zuccarello, B.: Measuring inaccessible residual stresses using multiple methods and superposition. Exp. Mech. 51(7), 1123–1134 (2011). doi:10.1007/s11340-010-9424-5

    Article  Google Scholar 

  36. Prime, M.B., DeWald, A.T.: The contour method. In: Schajer, G.S. (ed.) Practical Residual Stress Measurement Methods. Wiley, Chichester (2013). doi:10.1002/9781118402832.ch5

    Google Scholar 

  37. Prime. M.B., Gonzales, A.R.: The contour method: simple 2-D mapping of residual stresses. In: The 6th International Conference on Residual Stresses, Oxford, IOM Communications, London, pp. 617–624 (2000)

    Google Scholar 

  38. Prime, M.B.: Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J. Eng. Mater. Technol. 123(2), 162–168 (2001)

    Article  Google Scholar 

  39. Hill, M.R., Olson, M.D.: Repeatability of the contour method for residual stress measurement. Exp. Mech. 54(7), 1269–1277 (2014). doi:10.1007/s11340-014-9867-1

    Article  Google Scholar 

  40. Toparli, M.B., Fitzpatrick, M., Gungor, S.: Determination of multiple near-surface residual stress components in laser peened aluminum alloy via the contour method. Metall. Mater. Trans. A 46(9), 4268–4275 (2015). doi:10.1007/s11661-015-3026-x

    Article  Google Scholar 

  41. Woo, W., An, G.B., Em, V.T., DeWald, A.T., Hill, M.R.: Through-thickness distributions of residual stresses in an 80 mm thick weld using neutron diffraction and contour method. J. Mater. Sci. 50(2), 784–793 (2014)

    Article  Google Scholar 

  42. Braga, D.F.O., Coules, H.E., Pirling, T., Richter-Trummer, V., Colegrove, P., de Castro, P.M.S.T.: Assessment of residual stress of welded structural steel plates with or without post weld rolling using the contour method and neutron diffraction. J. Mater. Process. Technol. 213(12), 2323–2328 (2013). doi:10.1016/j.jmatprotec.2013.07.004

    Article  Google Scholar 

  43. Elmesalamy, A., Francis, J.A., Li, L.: A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel. Int. J. Press. Vessel. Pip. 113, 49–59 (2014). doi:10.1016/j.ijpvp.2013.11.002

    Article  Google Scholar 

  44. Rolph, J., Iqbal, N., Hoffman, M., Evans, A., Hardy, M., Glavicic, M., Preuss, M.: The effect of d0 reference value on a neutron diffraction study of residual stress in a γ/γ’ nickel-base superalloy. J. Strain Anal. Eng. Des. 48(4), 219–228 (2013). doi:10.1177/0309324713486273

    Article  Google Scholar 

  45. Traore, Y., Paddea, S., Bouchard, P., Gharghouri, M.: Measurement of the residual stress tensor in a compact tension weld specimen. Exp. Mech. 53(4), 605–618 (2013). doi:10.1007/s11340-012-9672-7

    Article  Google Scholar 

  46. Pagliaro, P., Prime, M.B., Clausen, B., Lovato, M.L., Zuccarello, B.: Known residual stress specimens using opposed indentation. J. Eng. Mater. Technol. 131, 031002 (2009)

    Article  Google Scholar 

  47. Prime, M.B., DeWald, A.T., Hill, M.R., Clausen, B., Tran, M.: Forensic determination of residual stresses and KI from fracture surface mismatch. Eng. Fract. Mech. 116, 158–171 (2014). doi:10.1016/j.engfracmech.2013.12.008

    Article  Google Scholar 

  48. Mahmoudi, A.H., Saei, A.: Influence of asymmetrical cuts in measuring residual stresses using contour method. Int. J. Press. Vessel. Pip. 134, 1–10 (2015). doi:10.1016/j.ijpvp.2015.08.004

    Article  Google Scholar 

  49. Hosseinzadeh, F., Bouchard, P.: Mapping multiple components of the residual stress tensor in a large P91 steel pipe girth weld using a single contour cut. Exp. Mech. 53(2), 171–181 (2013). doi:10.1007/s11340-012-9627-z

    Article  Google Scholar 

  50. Olson, M.D., Hill, M.R.: A new mechanical method for biaxial residual stress mapping. Exp. Mech. 55(6), 1139–1150 (2015). doi:10.1007/s11340-015-0013-5

    Article  Google Scholar 

  51. Prime, M.B.: Contour method advanced applications: hoop stresses in cylinders and discontinuities. In: Proulx, T. (ed.) Engineering Applications of Residual Stress, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 8, pp. 13–28. Springer, New York (2011). doi:10.1007/978-1-4614-0225-1_2

  52. Hosseinzadeh, F., Kowal, J., Bouchard, P.J.: Towards good practice guidelines for the contour method of residual stress measurement. J. Eng. (2014)

    Google Scholar 

  53. Johnson. G.: Residual stress measurements using the contour method. Ph.D. Dissertation, University of Manchester (2008). http://www.lanl.gov/contour

  54. Brown, D.W., Holden, T.M., Clausen, B., Prime, M.B., Sisneros, T.A., Swenson, H., Vaja, J.: Critical comparison of Two independent measurements of residual stress in an electron-beam welded uranium cylinder: neutron diffraction and the contour method. Acta Mater. 59(3), 864–873 (2011). doi:10.1016/j.actamat.2010.09.022

    Article  Google Scholar 

  55. de Swardt, R.R.: Finite element simulation of crack compliance experiments to measure residual stresses in thick-walled cylinders. J. Press. Vessel. Technol. 125(3), 305–308 (2003)

    Article  Google Scholar 

  56. Ahmad, B., Fitzpatrick, M.E.: Minimization and mitigation of wire EDM cutting errors in the application of the contour method of residual stress measurement. Metall. Mater. Trans. A 47(1), 301–313 (2016). doi:10.1007/s11661-015-3231-7

    Article  Google Scholar 

  57. Prime, M.B., Kastengren, A.L.: The contour method cutting assumption: error minimization and correction. In: Proulx, T. (ed.) Experimental and Applied Mechanics, Volume 6, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 17, pp. 233–250. Springer, New York (2011). http://www.lanl.gov/contour/. doi:10.1007/978-1-4419-9792-0_40

  58. Prime, M.B., Sebring, R.J., Edwards, J.M., Hughes, D.J., Webster, P.J.: Laser surface-contouring and spline data-smoothing for residual stress measurement. Exp. Mech. 44(2), 176–184 (2004)

    Article  Google Scholar 

  59. Olson, M.D., DeWald, A.T., Prime, M.B., Hill, M.R.: Estimation of uncertainty for contour method residual stress measurements. Exp. Mech. 55(3), 577–585 (2015). doi:10.1007/s11340-014-9971-2

    Article  Google Scholar 

  60. Savaria, V., Hoseini, M., Bridier, F., Bocher, P., Arkinson, P.: On the measurement of residual stress in induction hardened parts. Mater. Sci. Forum 681, 431–436 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Adrian DeWald and Hill Engineering, LLC for the expert experimental work, both EDM cutting and surface scanning, for the measurements reported in this paper. Gratitude is also expressed to Lewis Rosado, Kevin Thompson, Hitesh Trivedi and their colleagues in the Mechanical Systems Branch of the Air Force Research Laboratory for providing the bearing and their valuable support of the project thus far.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Prime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Isaac, D.D., Prime, M.B., Arakere, N. (2017). Residual Stress Measurement of Full-Scale Jet-Engine Bearing Elements Using the Contour Method. In: Quinn, S., Balandraud, X. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42255-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42255-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42254-1

  • Online ISBN: 978-3-319-42255-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics