Skip to main content

A Stochastic Multi-Scale Model for Predicting MEMS Stiction Failure

  • Conference paper
  • First Online:
Micro and Nanomechanics, Volume 5

Abstract

Adhesion is an important phenomenon in the context of MEMS for which the surface forces become dominant in comparison with the body forces. Because the magnitudes of the adhesive forces strongly depend on the surface interaction distances, which in turn evolve with the roughness of the contacting surfaces, the adhesive forces cannot be determined in a deterministic way. To quantify the uncertainties on the structural stiction behavior of a MEMS, this work proposes a “stochastic multi-scale methodology”. The key ingredient of the method is the evaluation of the random meso-scale apparent contact forces, which homogenize the effect of the nano-scale roughness and are integrated into a numerical model of the studied structure as a random contact law. To obtain the probabilistic behavior at the structural MEMS scale, a direct method needs to evaluate explicitly the meso-scale apparent contact forces in a concurrent way with the stochastic multi-scale approach. To reduce the computational cost, a stochastic model is constructed to generate the random meso-scale apparent contact forces. To this end, the apparent contact forces are parameterized by a vector of parameters before applying a polynomial chaos expansion in order to construct a mathematical model representing the probability of the random parameters vector. The problem of micro-beam stiction is then studied in a probabilistic way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Spengen, W.M., Puers, R., De Wolf, I.: On the physics of stiction and its impact on the reliability of microstructures. J. Adhes. Sci. Technol. 17 (4), 563–582 (2003)

    Article  Google Scholar 

  2. Hoang, T.-V., Wu, L., Paquay, J.-C., Golinval, Arnst, M., Noels, L.: A computational stochastic multi-scale methodology for MEMS structures involving adhesive contact. Tribol. Int. (submitted)

    Google Scholar 

  3. DelRio, F.W., Dunn, M.L., de Boer, M.P.: Van der waals and capillary adhesion of polycrystalline silicon micromachined surfaces. In: Bhushan, B. (ed.) Scanning Probe Microscopy in Nanoscience and Nanotechnology. NanoScience and Technology, vol. 3, pp. 363–393. Springer, Berlin (2013). doi:10.1007/978-3-642-25414-7-14. http://dx.doi.org/10.1007/978-3-642-25414-7_14

    Google Scholar 

  4. DelRio, F.W., Dunn, M.L.D., de Boer, M.P.: Capillary adhesion model for contacting micromachined surfaces. Scr. Mater. 59 (9), 916–920 (2008). viewpoint set no. 44 “The materials for MEMS”. doi:http://dx.doi.org/10.1016/j.scriptamat.2008.02.037. http://www.sciencedirect.com/science/article/pii/S1359646208001668

  5. Xue, X., Polycarpou, A.A.: Meniscus model for noncontacting and contacting sphere-on-flat surfaces including elastic-plastic deformation. J. Appl. Phys. 103 (2), (2008). doi:10.1063/1.2830863

    Google Scholar 

  6. van Spengen, W.M.: A physical model to describe the distribution of adhesion strength in MEMS, or why one MEMS device sticks and another ‘identical’ one does not. J. Micromech. Microeng. 25 (12), 125012 (2015). http://stacks.iop.org/0960-1317/25/i=12/a=125012

    Article  Google Scholar 

  7. Wu, L., Noels, L., Rochus, V., Pustan, M., Golinval, J.-C.: A micro - macro approach to predict stiction due to surface contact in micro electro-mechanical systems. J. Microelectromech. Syst. 20 (4), 976–990 (2011). doi:10.1109/JMEMS.2011.2153823.

    Article  Google Scholar 

  8. Hoang, T.-V., Wu, L., Paquay, S., Obreja, A., Voicu, R., Müller, R., Golinval, J.-C., Noels, L.: A probabilistic model for predicting the uncertainties of the humid stiction phenomenon on hard materials. J. Comput. Appl. Math. 289, 173–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, S., Bhushan, B.: Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts. Mater. Sci. Eng. R. Rep. 61 (1), 78–106 (2008)

    Article  Google Scholar 

  10. de Boer, M.: Capillary adhesion between elastically hard rough surfaces. Exp. Mech. 47, 171–183 (2007). doi:10.1007/s11340-006-0631-z. http://dx.doi.org/10.1007/s11340-006-0631-z

    Article  Google Scholar 

  11. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  12. Hertz, H.: Ueber die berührung fester elastischer körper. J. für die reine und angewandte Math. 92, 156–171 (1882). http://eudml.org/doc/148490

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Noels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hoang, T.V., Wu, L., Paquay, S., Golinval, JC., Arnst, M., Noels, L. (2017). A Stochastic Multi-Scale Model for Predicting MEMS Stiction Failure. In: Starman, L., Hay, J., Karanjgaokar, N. (eds) Micro and Nanomechanics, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-42228-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42228-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42227-5

  • Online ISBN: 978-3-319-42228-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics