Skip to main content

Disruption of Anti-tumor T Cell Responses by Cancer-Associated Fibroblasts

  • Chapter
  • First Online:
Book cover Defects in T Cell Trafficking and Resistance to Cancer Immunotherapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 9))

  • 1095 Accesses

Abstract

Tumors arise from the malignant transformation of normal cells through genetic dysregulation of the cell growth controls. However, cancer cells are not the only component of a tumor and the non-cancer cell part of the tumor has been termed stroma. The tumor stroma comprises cells of at least three different origins: endothelial, mesenchymal and hematopoietic, thereby forming a complex microenvironment. Among these three elements, immune cells have been extensively studied for the last 20 years because of their potential tumoricidal properties. However, immunologists failed to efficiently harness the immune system’s anti-tumor properties until very recently, shedding light on a very complex immuno-suppressive network in tumor-bearing hosts. The mesenchymal part of the tumor, the so-called cancer-associated fibroblasts (CAFs), is among those actors of the tumor that have been disregarded despite their crucial role. Indeed, CAFs have been recently shown to be one of the more potent immune-suppressive cells of the tumor micro-environment. This chapter focuses on their roles on immune components of the tumor micro-environment, especially T cells. CAFs can impact T cells in two major ways: Disruption of T cell homeostasis and functions, and exclusion of T cells from the vicinity of tumor cells. These recent advances in the understanding the tumor micro-environment reveals potential new ways for attacking tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ab:

Antibody

APCs:

Antigen presenting cells

CAFs:

Cancer-associated fibroblasts

CSC:

Cancer stem cell

CTL:

Cytotoxic T cells

CTLA-4:

Cytotoxic T lymphocyte antigen-4

DCs:

Dendritic cells

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

FAP:

Fibroblast activation protein

FRCs:

Fibroblastic reticular cells

FSP1:

Fibroblast specific protein-1

HCC:

Hepatocellular carcinoma

HGF:

Hepatocyte growth factor

HO-1:

Heme oxidase-1

HSCs:

Hepatic stellate cells

IDO:

Indolamine-2,3-dioxygenase

IFN:

Interferon

IL:

Interleukin

ITIM:

Immunoreceptor tyrosine inhibitory motif

LOX:

Lysyl-oxidase

MDSCs:

Myeloid derived suppressor cells

MHC:

Major hiscompatibility complex

MLR:

Mixed lymphocyte reaction

MMPs:

Matrix metalloproteases

MSCs:

Mesenchymal stem cells

NSCLC:

Non-small cell lung carcinoma

PD-1:

Programmed death-1

PD-L1:

Programmed death ligand-1

PDAC:

Pancreatic ductal adenocarcinoma

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

PSCs:

Pancreatic stellate cells

ROS:

Reactive oxygen species

α-SMA:

α-Smooth muscle actin

TAMs:

Tumor-associated macrophages

TGFβ:

Transforming growth factor β

TLSs:

Tertiary lymphoid structures

Tregs:

Regulatory T cells

TSLP:

Thymic stromal lymphopoietin

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Paget G. Remarks on a case of alternate partial anaesthesia. Br Med J. 1889;1(1462):1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steer HJ et al. Harnessing the immune response to treat cancer. Oncogene. 2010;29(48):6301–13.

    Article  CAS  PubMed  Google Scholar 

  4. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6(10):715–27.

    Article  CAS  PubMed  Google Scholar 

  5. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81.

    Article  CAS  PubMed  Google Scholar 

  6. Khong HT, Wang QJ, Rosenberg SA. Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother. 2004;27(3):184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Restifo NP et al. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hinz S et al. Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene. 2000;19(48):5477–86.

    Article  CAS  PubMed  Google Scholar 

  9. Mittal D et al. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mauge L et al. Control of the adaptive immune response by tumor vasculature. Front Oncol. 2014;4:61.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014;27:1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kraman M et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010;330(6005):827–30.

    Article  CAS  PubMed  Google Scholar 

  14. Feig C et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211(8):1503–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darby IA et al. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301–11.

    PubMed  PubMed Central  Google Scholar 

  17. Vaheri A et al. Nemosis, a novel way of fibroblast activation, in inflammation and cancer. Exp Cell Res. 2009;315(10):1633–8.

    Article  CAS  PubMed  Google Scholar 

  18. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–9.

    Article  CAS  PubMed  Google Scholar 

  19. Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol. 2013;229(2):298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Osterreicher CH et al. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci U S A. 2011;108(1):308–13.

    Article  CAS  PubMed  Google Scholar 

  21. Sugimoto H et al. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5(12):1640–6.

    Article  CAS  PubMed  Google Scholar 

  22. Franco M et al. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood. 2011;118(10):2906–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li T et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 2012;318(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  24. Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal. 2013;11:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990;87(18):7235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Acharyya S et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnold JN et al. Tumoral immune suppression by macrophages expressing fibroblast activation protein-alpha and heme oxygenase-1. Cancer Immunol Res. 2014;2(2):121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts EW et al. Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med. 2013;210(6):1137–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vicent S et al. Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res. 2012;72(22):5744–56.

    Article  CAS  PubMed  Google Scholar 

  30. Kojima Y et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. 2010;107(46):20009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin C et al. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 2013;123(5):1902–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bachem MG et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998;115(2):421–32.

    Article  CAS  PubMed  Google Scholar 

  33. Iwano M et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeisberg EM et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67(21):10123–8.

    Article  CAS  PubMed  Google Scholar 

  35. Kidd S et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 2012;7(2), e30563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paunescu V et al. Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med. 2011;15(3):635–46.

    Article  CAS  PubMed  Google Scholar 

  37. Quante M et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Direkze NC et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 2004;64(23):8492–5.

    Article  CAS  PubMed  Google Scholar 

  39. Olumi AF et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59(19):5002–11.

    CAS  PubMed  Google Scholar 

  40. Krtolica A et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98(21):12072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cardone A et al. Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. Panminerva Med. 1997;39(3):174–7.

    CAS  PubMed  Google Scholar 

  42. Maeshima AM et al. Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer. 2002;95(12):2546–54.

    Article  PubMed  Google Scholar 

  43. Tsujino T et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res. 2007;13(7):2082–90.

    Article  CAS  PubMed  Google Scholar 

  44. Erkan M et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2008;6(10):1155–61.

    Article  PubMed  Google Scholar 

  45. Giannoni E et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 2010;70(17):6945–56.

    Article  CAS  PubMed  Google Scholar 

  46. Liu S et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71(2):614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giannoni E et al. Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal. 2011;14(12):2361–71.

    Article  CAS  PubMed  Google Scholar 

  48. Vermeulen L et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  49. Lotti F et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210(13):2851–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li HJ et al. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2012;2(9):840–55.

    Article  CAS  PubMed  Google Scholar 

  51. Kuperwasser C et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101(14):4966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Allinen M et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  53. Bhowmick NA et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.

    Article  CAS  PubMed  Google Scholar 

  54. Orimo A et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  55. Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316(17):2713–22.

    Article  PubMed  CAS  Google Scholar 

  56. Levental KR et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saadi A et al. Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proc Natl Acad Sci U S A. 2010;107(5):2177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Herrera M et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res. 2013;19(21):5914–26.

    Article  CAS  PubMed  Google Scholar 

  59. Shangguan L et al. Inhibition of TGF-beta/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells. 2012;30(12):2810–9.

    Article  PubMed  CAS  Google Scholar 

  60. Calon A et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22(5):571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karnoub AE et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.

    Article  CAS  PubMed  Google Scholar 

  62. Zigrino P et al. Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J Invest Dermatol. 2009;129(11):2686–93.

    Article  CAS  PubMed  Google Scholar 

  63. Vosseler S et al. Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. Int J Cancer. 2009;125(10):2296–306.

    Article  CAS  PubMed  Google Scholar 

  64. Sternlicht MD et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98(2):137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Poulsom R et al. Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol. 1992;141(2):389–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39(3):305–18.

    Article  CAS  PubMed  Google Scholar 

  67. Kikuta K et al. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun. 2010;403(3–4):380–4.

    Article  CAS  PubMed  Google Scholar 

  68. Duda DG et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A. 2010;107(50):21677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stoker MG, Shearer M, O’Neill C. Growth inhibition of polyoma-transformed cells by contact with static normal fibroblasts. J Cell Sci. 1966;1(3):297–310.

    CAS  PubMed  Google Scholar 

  70. Rhim AD et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506.

    Article  CAS  PubMed  Google Scholar 

  72. Jung DW et al. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer. 2010;127(2):332–44.

    CAS  PubMed  Google Scholar 

  73. Anderson IC et al. The angiogenic factor interleukin 8 is induced in non-small cell lung cancer/pulmonary fibroblast cocultures. Cancer Res. 2000;60(2):269–72.

    CAS  PubMed  Google Scholar 

  74. Erez N et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 2010;17(2):135–47.

    Article  CAS  PubMed  Google Scholar 

  75. De Boeck A et al. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics. 2013;13(2):379–88.

    Article  PubMed  CAS  Google Scholar 

  76. Tjomsland V et al. Interleukin 1alpha sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts. Neoplasia. 2011;13(8):664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin ZY, Chuang YH, Chuang WL. Cancer-associated fibroblasts up-regulate CCL2, CCL26, IL6 and LOXL2 genes related to promotion of cancer progression in hepatocellular carcinoma cells. Biomed Pharmacother. 2012;66(7):525–9.

    Article  CAS  PubMed  Google Scholar 

  78. Rider P et al. Interleukin-1alpha. Semin Immunol. 2013;25(6):430–8.

    Article  CAS  PubMed  Google Scholar 

  79. Singh R, Lillard Jr JW, Singh S. Chemokines: key players in cancer progression and metastasis. Front Biosci (Schol Ed). 2011;3:1569–82.

    Google Scholar 

  80. Shi J et al. CXCL12-CXCR4 contributes to the implication of bone marrow in cancer metastasis. Future Oncol. 2014;10(5):749–59.

    Article  CAS  PubMed  Google Scholar 

  81. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92.

    Article  CAS  PubMed  Google Scholar 

  82. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4(12):941–52.

    Article  CAS  PubMed  Google Scholar 

  83. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pommier A et al. Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4+ T cells. Proc Natl Acad Sci U S A. 2013;110(32):13085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu MH et al. Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res. 2011;17(6):1306–16.

    Article  CAS  PubMed  Google Scholar 

  86. Roca H et al. CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem. 2009;284(49):34342–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liao D et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4 T1 murine breast cancer model. PLoS One. 2009;4(11), e7965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Comito G et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 2014;33(19):2423–31.

    Article  CAS  PubMed  Google Scholar 

  89. Herrera M et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci. 2013;104(4):437–44.

    Article  CAS  PubMed  Google Scholar 

  90. Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett. 2008;269(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  91. Ma Y, Ullrich SE. Intratumoral mast cells promote the growth of pancreatic cancer. Oncoimmunology. 2013;2(10), e25964.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Larsen SK, Gao Y, Basse PH. NK cells in the tumor microenvironment. Crit Rev Oncog. 2014;19(1–2):91–105.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pradier A et al. Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant. 2011;20(5):681–91.

    Article  PubMed  Google Scholar 

  94. Li T et al. Colorectal carcinoma-derived fibroblasts modulate natural killer cell phenotype and antitumor cytotoxicity. Med Oncol. 2013;30(3):663.

    Article  PubMed  CAS  Google Scholar 

  95. Balsamo M et al. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci U S A. 2009;106(49):20847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Laouar Y et al. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol. 2005;6(6):600–7.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Q et al. Blockade of transforming growth factor-{beta} signaling in tumor-reactive CD8(+) T cells activates the antitumor immune response cycle. Mol Cancer Ther. 2006;5(7):1733–43.

    Article  CAS  PubMed  Google Scholar 

  98. Sanjabi S, Mosaheb MM, Flavell RA. Opposing effects of TGF-beta and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity. 2009;31(1):131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol. 2005;174(9):5215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–80.

    Article  CAS  PubMed  Google Scholar 

  101. Shafer-Weaver KA et al. Cutting edge: tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells. J Immunol. 2009;183(8):4848–52.

    Article  CAS  PubMed  Google Scholar 

  102. Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol. 2014;32:51–82.

    Article  CAS  PubMed  Google Scholar 

  103. Fantini MC et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4 + CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004;172(9):5149–53.

    Article  CAS  PubMed  Google Scholar 

  104. Kinoshita T et al. Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer Sci. 2013;104(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  105. Di Nicola M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.

    Article  PubMed  Google Scholar 

  106. Martin B et al. Highly self-reactive naive CD4 T cells are prone to differentiate into regulatory T cells. Nat Commun. 2013;4:2209.

    PubMed  Google Scholar 

  107. Geginat J et al. Plasticity of human CD4 T cell subsets. Front Immunol. 2014;5:630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. De Monte L et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011;208(3):469–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mougiakakos D et al. The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood. 2011;117(18):4826–35.

    Article  CAS  PubMed  Google Scholar 

  110. Prevosto C et al. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica. 2007;92(7):881–8.

    Article  CAS  PubMed  Google Scholar 

  111. Maccario R et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90(4):516–25.

    CAS  PubMed  Google Scholar 

  112. Haniffa MA et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol. 2007;179(3):1595–604.

    Article  CAS  PubMed  Google Scholar 

  113. Ozdemir BC et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xue Y et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med. 2012;18(1):100–10.

    Article  CAS  Google Scholar 

  115. Kumar V, Gabrilovich DI. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology. 2014;143(4):512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ino Y et al. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS One. 2013;8(2), e55146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Djouad F et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10):3837–44.

    Article  CAS  PubMed  Google Scholar 

  118. Meisel R et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619–21.

    Article  CAS  PubMed  Google Scholar 

  119. Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158(3):638–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  121. Okazaki T et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A. 2001;98(24):13866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Parry RV et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pinchuk IV et al. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology. 2008;135(4):1228–37. 1237 e1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nazareth MR et al. Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol. 2007;178(9):5552–62.

    Article  CAS  PubMed  Google Scholar 

  126. Khalili JS et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res. 2012;18(19):5329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barnas JL et al. Reciprocal functional modulation of the activation of T lymphocytes and fibroblasts derived from human solid tumors. J Immunol. 2010;185(5):2681–92.

    Article  CAS  PubMed  Google Scholar 

  128. Bailey SR et al. Th17 cells in cancer: the ultimate identity crisis. Front Immunol. 2014;5:276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Neyt K et al. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 2012;33(6):297–305.

    Article  CAS  PubMed  Google Scholar 

  130. Dieu-Nosjean MC et al. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 2014;35(11):571–80.

    Article  CAS  PubMed  Google Scholar 

  131. Goc J et al. Characteristics of tertiary lymphoid structures in primary cancers. Oncoimmunology. 2013;2(12), e26836.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol. 2015;15(6):350–61.

    Article  CAS  PubMed  Google Scholar 

  133. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.

    Article  CAS  PubMed  Google Scholar 

  134. Galon J et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang L et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  136. Salmon H et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122(3):899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brahmer JR et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liang JJ et al. High levels of expression of human stromal cell-derived factor-1 are associated with worse prognosis in patients with stage II pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2010;19(10):2598–604.

    Article  CAS  PubMed  Google Scholar 

  139. Akishima-Fukasawa Y et al. Prognostic significance of CXCL12 expression in patients with colorectal carcinoma. Am J Clin Pathol. 2009;132(2):202–10. quiz 307.

    Article  CAS  PubMed  Google Scholar 

  140. Scotton CJ et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 2002;62(20):5930–8.

    CAS  PubMed  Google Scholar 

  141. Tran E et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210(6):1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sherman MH et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schols D et al. Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res. 1997;35(3):147–56.

    Article  CAS  PubMed  Google Scholar 

  144. Keating GM. Plerixafor: a review of its use in stem-cell mobilization in patients with lymphoma or multiple myeloma. Drugs. 2011;71(12):1623–47.

    Article  CAS  PubMed  Google Scholar 

  145. Bondareva A et al. The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One. 2009;4(5), e5620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mickael Ludwig, Jia-Yun Li and Zhikai Wang for critical reading.

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Pommier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pommier, A., Fearon, D.T. (2016). Disruption of Anti-tumor T Cell Responses by Cancer-Associated Fibroblasts. In: Donnadieu, E. (eds) Defects in T Cell Trafficking and Resistance to Cancer Immunotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-42223-7_4

Download citation

Publish with us

Policies and ethics