Skip to main content

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 853 Accesses

Abstract

Time-continuous and time-discrete dynamic systems as a whole (hybrid systems) are of undoubted interest for applications. The mathematical analysis developed on time scales allows to consider the real-world phenomena in a more accurate description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atici F.M., Biles D.C., Lebedinsky A. An application of time scales to economics. Math. and Comput. Modelling 43 (2006) 718–726.

    Article  MathSciNet  MATH  Google Scholar 

  2. Atici F.M. and McMahan C.S. A comparison in the theory of calculus of variations on time scale with an application to the Ramsey model. Nonlinear Dynamics and Systems Theory 9 (1) (2009) 1–10.

    MathSciNet  MATH  Google Scholar 

  3. Babenko S.V. Revisiting the theory of stability on time scales of the class of linear systems with structural perturbations. Int. Appl. Mech. 47 (1) (2011) 86–96.

    Article  MathSciNet  MATH  Google Scholar 

  4. Babenko, S.V., Martynyuk, A.A. Stability of a dynamic graph on time scales. Nonlinear Dynamics and Systems Theory 14 (1) (2014) 30–43.

    MathSciNet  MATH  Google Scholar 

  5. Bartosiewicz Z., and Pawluszewicz E. Realizations of linear control systems on time scales. Control & Cybernetics 35 (4) (2006) 769–786.

    MathSciNet  MATH  Google Scholar 

  6. Bohner M., Fan M., and Zhang J. Periodicity of scalar dynamic equations and applications to population models J. Math. Anal. Appl. 330 (2007) 1–9.

    Google Scholar 

  7. Bohner M., Martynyuk A.A. Elements of stability theory of A.M. Lyapunov for dynamic equations on time scales. Int. Appl. Mech. 43 (9) (2007) 949–970.

    Google Scholar 

  8. Bohner M., Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhäuser, 2001.

    Book  MATH  Google Scholar 

  9. Bohner M., Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003.

    Book  MATH  Google Scholar 

  10. Bohner M., Rao V.S.H., Sanyal S. Global stability of complex-valued neural networks on time scales. Diff Eqns and Dyn. Syst. 19 (1&2) (2011) 3–11.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding X., Hao J. and Liu Ch. Multiple periodic solutions for a delayed predator-prey system on time scale. World Academy of Science, Engineering and Technology 60 (2011) 1532–1537.

    Google Scholar 

  12. Gard T., Hoffacker J. Asymptotic behavior of natural growth on time scales. Dynamic Systems and Appl. 12 (1–2) (2003) 131–148.

    Google Scholar 

  13. Hang J. Global stability analysis in Hopfield neural networks. Appl. Math. Let. 16 (2003) 925–931.

    Google Scholar 

  14. Hopfield J.J. Neurons with graded response have collective computational properties like those of two state neurons. Proc. Nat. Acad. Sci. USA 81 (1984) 3088–3092.

    Article  Google Scholar 

  15. Lila D.M. Stability of motion of quasiperiodic systems in critical cases. Int. Appl. Mech. bf46 (2) (2010) 229–240.

    Google Scholar 

  16. Luk’yanova T.A. and Martynyuk A.A. Integral inequalities and stability of an equilibrium state on a time scale. Ukrainian Mathematical Journal 62 (11) (2011) 1490–1499.

    MathSciNet  MATH  Google Scholar 

  17. Luk’yanova T.A. and Martynyuk A.A. Sufficient conditions of connective stability of motion on time scale Int. Appl. Mech. 49 (2) (2013) 232–244.

    Google Scholar 

  18. Marks II R.J., Gravagne I., Davis J.M., and DaCunha J.J. Nonregressivity in switched linear circuits and mechanical systems. Mathematical and Computer Modeling 43 (2006) 1383–1392.

    Article  MathSciNet  MATH  Google Scholar 

  19. Martynyuk A.A. On the exponential stability of dynamic systems on time scales Dokl. Akad. Nauk 421 (2008) 312–317.

    Google Scholar 

  20. Martynyuk A.A. Stability Theory of Solutions of Dynamic Equations on Time Scales. Kiev: Phoeniks, 2012.

    MATH  Google Scholar 

  21. Martynyuk A.A. Elements of stability theory of hybrid systems. Int. Appl. Mech. 51 (3) (2015) 243–302.

    Article  MathSciNet  MATH  Google Scholar 

  22. Nitta T. ​​Complex-Valued Neural Networks: Utilizing Hight-Dimensional Parameters. Hershey, PA: Information Science Reference, 2009.

    Book  Google Scholar 

  23. Šiljak D.D. On stability of large-scale systems under structural perturbations. IEEE. Transactions on Systems, Man and Cybernetics 3 (1973) 415–417.

    Article  MATH  Google Scholar 

  24. Šiljak D.D. Dynamic graphs. Nonlinear Analysis: Hybrid Systems 2 (2008) 544–567.

    MathSciNet  MATH  Google Scholar 

  25. Wang L., Zou X. Exponential stability of Cohen-Grossberg neural networks. Neural networks 16 (2002) 415–422.

    Google Scholar 

  26. Yao Z. Existence and Global exponential stability of an almost periodic solution for a host-macroparasite equation on time scales. Advances in Difference Equations (2015) 2015:41 DOI 10.1186/s13662-015-0383-0.

    Article  MathSciNet  Google Scholar 

  27. Zhang J. Global stability analysis in Hopfield neural networks. Appl. Math. Let. 16 (2003) 925–931.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhuang K. and Wen Zh. Periodic solutions for a delayed population model on time scales. Int. J. Comput. Math. Sci. 4 (3)(2010) 166–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martynyuk, A.A. (2016). Applications. In: Stability Theory for Dynamic Equations on Time Scales. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-42213-8_5

Download citation

Publish with us

Policies and ethics