Skip to main content

Magnet-Targeted Delivery and Imaging

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Magnetic nanoparticles, in combination with applied magnetic fields, can non-invasively focus delivery of small-molecule drugs and human cells to specific regions of the anatomy. This emerging technology could solve one of the main challenges in therapy development: delivery of a high concentration of the therapeutic agent to the target organ or tissue whilst reducing systemic dosing and off-target side effects. Several challenges, however, must be met before this technology can be applied either effectively or safely in the clinic to augment therapies. Multiple nanoparticle features interact to influence the efficiency of magnet-targeted delivery, and so their design will have a large influence on the success of therapeutic targeting. Iron oxide core size and composition affect the type and strength of magnetism, and thus the amount of force that can be applied by an external magnetic field, while particle behaviour within biological systems can be affected by particle size and coating. Preclinical researchers have investigated the use of magnetic targeting-based therapies across a wide range of conditions, and positive results have been reported for both cell and drug delivery applications. Furthermore, magnetic resonance imaging (MRI) can non-invasively monitor the success of targeted delivery—providing high-resolution anatomical information on particle location in preclinical and clinical contexts. In this chapter, we provide a basic introduction to the physical principles behind magnetic targeting technology, relevant design features of nanoparticles and magnetic targeting devices, an overview of preclinical and clinical applications, and an introduction to imaging magnetic particles in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):R167–81.

    Article  CAS  Google Scholar 

  2. Connell JJ, Patrick PS, Yu Y, Lythgoe MF, Kalber TL. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles. Regen Med. 2015;10(6):757–72.

    Article  CAS  PubMed  Google Scholar 

  3. Wilson MW, Kerlan Jr RK, Fidelman NA, Venook AP, LaBerge JM, Koda J, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients. Radiology. 2004;230(1):287–93.

    Article  PubMed  Google Scholar 

  4. Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56(20):4686–93.

    CAS  PubMed  Google Scholar 

  5. Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc. 2010;132(31):10623–5.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng K, Shen D, Hensley MT, Middleton R, Sun B, Liu W, et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat Commun. 2014;5:4880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grady MS, Howard 3rd MA, Broaddus WC, Molloy JA, Ritter RC, Quate EG, et al. Magnetic stereotaxis: a technique to deliver stereotactic hyperthermia. Neurosurgery. 1990;27(6):1010–5. discussion 5-6.

    Article  CAS  PubMed  Google Scholar 

  8. Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robotics Res. 2009;28(4):571–82.

    Article  Google Scholar 

  9. Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot. 2010;26(6):1006–17.

    Article  Google Scholar 

  10. Pouponneau P, Soulez G, Beaudoin G, Leroux JC, Martel S. MR imaging of therapeutic magnetic microcarriers guided by magnetic resonance navigation for targeted liver chemoembolization. Cardiovasc Intervent Radiol. 2014;37(3):784–90.

    Article  PubMed  Google Scholar 

  11. Riegler J, Lau KD, Garcia-Prieto A, Price AN, Richards T, Pankhurst QA, et al. Magnetic cell delivery for peripheral arterial disease: a theoretical framework. Med Phys. 2011;38(7):3932–43.

    Article  PubMed  Google Scholar 

  12. Nacev A, Beni C, Bruno O, Shapiro B. The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater. 2011;323(6):651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krishnan KM. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn. 2010;46(7):2523–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Faraudo J, Andreu JS, Camacho J. Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter. 2013;9(29):6654–64.

    Article  CAS  Google Scholar 

  15. Song M, Kim YJ, Kim YH, Roh J, Kim SU, Yoon BW. Using a neodymium magnet to target delivery of ferumoxidelabeled human neural stem cells in a rat model of focal cerebral ischemia. Hum Gene Ther. 2010;21(5):603–10.

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi T, Ochi M, Yanada S, Ishikawa M, Adachi N, Deie M, et al. A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy. 2008;24(1):69–76.

    Article  PubMed  Google Scholar 

  17. Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther. 2004;15(4):351–60.

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki H, Tanaka N, Nakanishi K, Nishida K, Hamasaki T, Yamada K, et al. Therapeutic effects with magnetic targeting of bone marrow stromal cells in a rat spinal cord injury model. Spine. 2011;36(12):933–8.

    Article  PubMed  Google Scholar 

  19. Kyrtatos PG, Lehtolainen P, Junemann-Ramirez M, Garcia-Prieto A, Price AN, Martin JF, et al. Magnetic tagging increases delivery of circulating progenitors in vascular injury. J Am Coll Cardiol Intv. 2009;2(8):794–802.

    Article  Google Scholar 

  20. Riegler J, Wells JA, Kyrtatos PG, Price AN, Pankhurst QA, Lythgoe MF. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials. 2010;31(20):5366–71.

    Article  CAS  PubMed  Google Scholar 

  21. Kodama A, Kamei N, Kamei G, Kongcharoensombat W, Ohkawa S, Nakabayashi A, et al. In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model. J Bone Joint Surg Br Vol. 2012;94(7):998–1006.

    Article  CAS  Google Scholar 

  22. Shen Y, Liu X, Huang Z, Pei N, Xu J, Li Z, et al. Comparison of magnetic intensities for mesenchymal stem cell targeting therapy on ischemic myocardial repair: high magnetic intensity improves cell retention but has no additional functional benefit. Cell Transplant. 2014;24(10):1981–97.

    Article  PubMed  Google Scholar 

  23. Oshima S, Kamei N, Nakasa T, Yasunaga Y, Ochi M. Enhancement of muscle repair using human mesenchymal stem cells with a magnetic targeting system in a subchronic muscle injury model. J Orthop Sci. 2014;19(3):478–88.

    Article  PubMed  Google Scholar 

  24. Vandergriff AC, Hensley TM, Henry ET, Shen D, Anthony S, Zhang J, et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials. 2014;35(30):8528–39.

    Article  CAS  PubMed  Google Scholar 

  25. Yanai A, Hafeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21(6):1137–48.

    Article  PubMed  Google Scholar 

  26. Riegler J, Liew A, Hynes SO, Ortega D, O’Brien T, Day RM, et al. Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials. 2013;34(8):1987–94.

    Article  CAS  PubMed  Google Scholar 

  27. Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP, Simari RD, et al. Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol. 2006;48(9):1839–45.

    Article  CAS  PubMed  Google Scholar 

  28. Kang HJ, Kim JY, Lee HJ, Kim KH, Kim TY, Lee CS, et al. Magnetic bionanoparticle enhances homing of endothelial progenitor cells in mouse hindlimb ischemia. Korean Circ J. 2012;42(6):390–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng L, Wang C, Ma X, Wang Q, Cheng Y, Wang H, et al. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv Funct Mater. 2013;23(3):272–80.

    Article  CAS  Google Scholar 

  30. Riegler J, Allain B, Cook RJ, Lythgoe MF, Pankhurst QA. Magnetically assisted delivery of cells using a magnetic resonance imaging system. J Phys D: Appl Phys. 2011;44(5).

    Google Scholar 

  31. Mathieu JB, Martel S. Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J Appl Phys. 2009;106(4):44904.

    Article  Google Scholar 

  32. Alksne JF. Stereotactic thrombosis of intracranial aneurysms. N Engl J Med. 1971;284(4):171–4.

    Article  CAS  PubMed  Google Scholar 

  33. Alksne JF, Fingerhut AG, Rand RW. Magnetic probe for the stereotactic thrombosis of intracranial aneurysms. J Neurol Neurosurg Psychiatry. 1967;30(2):159–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nacev A, Kim SH, Rodriguez-Canales J, Tangrea MA, Shapiro B, Emmert-Buck MR. A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens. Int J Nanomedicine. 2011;6:2907–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vemulkar T, Mansell R, Petit D, Cowburn RP, Lesniak MS. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications. Appl Phys Lett. 2015;107(1):12403.

    Article  Google Scholar 

  36. Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN, et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater. 2008;20(9):1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang GK, Inturi S, Serkova NJ, Merkulov S, McCrae K, Russek SE, et al. High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano. 2014;8(12):12437–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu F, Zhang L, Huang Y, Sun K, David AE, Yang VC. The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. Biomaterials. 2010;31(22):5842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoon TJ, Lee H, Shao HL, Hilderbrand SA, Weissleder R. Multicore assemblies potentiate magnetic properties of biomagnetic nanoparticles. Adv Mater. 2011;23(41):4793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paquet C, de Haan HW, Leek DM, Lin HY, Xiang B, Tian GH, et al. Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: a particle architecture generating a synergistic enhancement of the T(2) relaxation. ACS Nano. 2011;5(4):3104–12.

    Article  CAS  PubMed  Google Scholar 

  41. Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brulet A, et al. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for mr imaging and magneto-chemotherapy. ACS Nano. 2011;5(2):1122–40.

    Article  CAS  PubMed  Google Scholar 

  42. Fortin-Ripoche JP, Martina MS, Gazeau F, Menager C, Wilhelm C, Bacri JC, et al. Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology. 2006;239(2):415–24.

    Article  PubMed  Google Scholar 

  43. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–71.

    Article  CAS  PubMed  Google Scholar 

  45. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  PubMed  Google Scholar 

  46. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thorek DLJ, Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials. 2008;29(26):3583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298(2):315–22.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Q, Zhang J, Xia W, Gu H. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale. 2012;4(11):3415–21.

    Article  CAS  PubMed  Google Scholar 

  50. Child HW, Del Pino PA, De La Fuente JM, Hursthouse AS, Stirling D, Mullen M, et al. Working together: the combined application of a magnetic field and penetratin for the delivery of magnetic nanoparticles to cells in 3D. ACS Nano. 2011;5(10):7910–9.

    Article  CAS  PubMed  Google Scholar 

  51. Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 2006;13(4):283–7.

    Article  CAS  PubMed  Google Scholar 

  52. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008;3(5):703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cole AJ, David AE, Wang JX, Galban CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starchcoated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials. 2011;32(8):2183–93.

    Article  CAS  PubMed  Google Scholar 

  54. Barenholz Y. Doxil(R)-the first FDA-approved nano-drug: lessons learned. J Contr Release. 2012;160(2):117–34.

    Article  CAS  Google Scholar 

  55. Zimmermann U, Pilwat G. Organ specific application of drugs by means of cellular capsule systems (author’s transl). Z Naturforsch C. 1976;31(11–12):732–6.

    CAS  PubMed  Google Scholar 

  56. Wang C, Sun XQ, Cheng L, Yin SN, Yang GB, Li YG, et al. Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. Adv Mater. 2014;26(28):4794.

    Article  CAS  PubMed  Google Scholar 

  57. Hu CJ, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015.

    Google Scholar 

  58. Pouponneau P, Bringout G, Martel S. Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembilization: a design review. Ann Biomed Eng. 2014;42(5):929–39.

    Article  PubMed  Google Scholar 

  59. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.

    Article  CAS  PubMed  Google Scholar 

  60. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.

    Article  CAS  PubMed  Google Scholar 

  61. Chertok B, Moffat BA, David AE, Yu FQ, Bergemann C, Ross BD, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29(4):487–96.

    Article  CAS  PubMed  Google Scholar 

  62. Podaru G, Ogden S, Baxter A, Shrestha T, Ren S, Thapa P, et al. Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation. J Phys Chem B. 2014;118(40):11715–22.

    Article  CAS  PubMed  Google Scholar 

  63. Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci U S A. 2008;105(2):698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shapiro B, Dormer K, Rutel IB. A two-magnet system to push therapeutic nanoparticles. AIP Conf Proc. 2010;1311(1):77–88.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sarwar A, Lee R, Depireux DA, Shapiro B. Magnetic injection of nanoparticles into rat inner ears at a human head working distance. Ieee T Magn. 2013;49(1):440–52.

    Article  Google Scholar 

  66. Sarwar A, Nemirovski A, Shapiro B. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles. J Magn Magn Mater. 2012;324(5):742–54.

    Article  CAS  PubMed  Google Scholar 

  67. McNeil RG, Ritter RC, Wang B, Lawson MA, Gillies GT, Wika KG, et al. Functional design features and initial performance characteristics of a magnetic-implant guidance system for stereotactic neurosurgery. IEEE Trans Biomed Eng. 1995;42(8):793–801.

    Article  CAS  PubMed  Google Scholar 

  68. Nacev A, Weinberg IN, Stepanov PY, Kupfer S, Mair LO, Urdaneta MG, et al. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target. Nano Lett. 2015;15(1):359–64.

    Article  CAS  PubMed  Google Scholar 

  69. Muthana M, Kennerley AJ, Hughes R, Fagnano E, Richardson J, Paul M, et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun. 2015;6:8009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S, et al. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett. 2007;90(11):14105.

    Article  Google Scholar 

  71. Alksne JF, Smith RW. Iron-acrylic compound for steriotaxic aneurysm thrombosis. J Neurosurg. 1977;47(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  72. Turner RD, Rand RW, Bentson JR, Mosso JA. Ferromagnetic silicone necrosis of hypernephromas by selective vascular occlusion to the tumor: a new technique. J Urol. 1975;113(4):455–9.

    CAS  PubMed  Google Scholar 

  73. Kobeiter H, Georgiades CS, Leakakos T, Torbenson M, Hong K, Geschwind JF. Targeted transarterial therapy of Vx-2 rabbit liver tumor with Yttrium-90 labeled ferromagnetic particles using an external magnetic field. Anticancer Res. 2007;27(2):755–60.

    CAS  PubMed  Google Scholar 

  74. Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  75. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg. 1957;146(4):596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int J hyperther. 2010;26(8):790–5.

    Article  Google Scholar 

  77. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011;103(2):317–24.

    Article  Google Scholar 

  78. Bealle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clement O, Gazeau F, et al. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir. 2012;28(32):11834–42.

    Article  CAS  PubMed  Google Scholar 

  79. Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. 1993. Int J Hyperther. 2009;25(7):499–511.

    Article  CAS  Google Scholar 

  80. Heathman TR, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med. 2015;10(1):49–64.

    Article  CAS  PubMed  Google Scholar 

  81. Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Science translational medicine. 2013;5(179):179ps7.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Estelrich J, Escribano E, Queralt J, Busquets MA. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci. 2015;16(4):8070–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Senyei AE, Reich SD, Gonczy C, Widder KJ. In vivo kinetics of magnetically targeted low-dose doxorubicin. J Pharm Sci. 1981;70(4):389–91.

    Article  CAS  PubMed  Google Scholar 

  84. Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE. Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Canc Clin Oncol. 1983;19(1):135–9.

    Article  CAS  Google Scholar 

  85. Thiele RH, Colquhoun DA, Gillies GT, Tiouririne M. Manipulation of hyperbaric lidocaine using a weak magnetic field: a pilot study. Anesth Analg. 2012;114(6):1365–7.

    Article  CAS  PubMed  Google Scholar 

  86. Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol. 2007;2(8):495–9.

    Article  PubMed  Google Scholar 

  87. Heppner F, Mose JR. The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir. 1978;42(1–2):123–5.

    Article  CAS  PubMed  Google Scholar 

  88. Schmidt W, Fabricius EM, Schneeweiss U. The tumour-Clostridium phenomenon: 50 years of developmental research (Review). Int J Oncol. 2006;29(6):1479–92.

    CAS  PubMed  Google Scholar 

  89. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):784–93.

    Article  Google Scholar 

  90. Jiang Y, Sigmund F, Reber J, Dean-Ben XL, Glasl S, Kneipp M, et al. Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging. Sci Rep. 2015;5:11048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martel S, Felfoul O, Mohammadi M, Mathieu JB. Interventional procedure based on nanorobots propelled and steered by flagellated magnetotactic bacteria for direct targeting of tumors in the human body. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2497–500.

    PubMed  Google Scholar 

  92. Benoit MR, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z, et al. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Canc Res. 2009;15(16):5170–7.

    Article  CAS  Google Scholar 

  93. Alphandery E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano. 2011;5(8):6279–96.

    Article  CAS  PubMed  Google Scholar 

  94. Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano. 2014;8(5):5049–60.

    Article  CAS  PubMed  Google Scholar 

  95. Park SJ, Park SH, Cho S, Kim DM, Lee Y, Ko SY, et al. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep. 2013;3:3394.

    PubMed  PubMed Central  Google Scholar 

  96. Gadian DG. NMR and its applications to living systems, 2nd Edition. Oxford Science Publications. 1996.

    Google Scholar 

  97. Gleich B, Weizenecker R. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.

    Article  CAS  PubMed  Google Scholar 

  98. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT, et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med. 2006;56(5):1001–10.

    Article  PubMed  Google Scholar 

  99. Bauer LM, Situ SF, Griswold MA, Samia AC. Magnetic particle imaging tracers: state-of-the-art and future directions. J Phys Chem Lett. 2015;6(13):2509–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ML receives funding from Medical Research Council (MR/J013110/1); the King’s College London and UCL Comprehensive Cancer Imaging Centre CR-UK & EPSRC, in association with the MRC and DoH (England); the National Centre for the Replacement, Reduction and Refinement of Animal in Research (NC3Rs); UK Regenerative Medicine Platform Safety Hub (MRC: MR/K026739/1); and Eli Lilly and Company. PS Patrick is funded by UK Regenerative Medicine Platform. TL Kalber is funded by an EPSRC Early Career Fellowship (EP/L006472/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Lythgoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patrick, P.S., Pankhurst, Q.A., Payne, C., Kalber, T.L., Lythgoe, M.F. (2017). Magnet-Targeted Delivery and Imaging. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_6

Download citation

Publish with us

Policies and ethics