Skip to main content

Abstract

Molecular imaging has been instrumental for unraveling the mystery of biological processes and for diagnosing disease with more accuracy than ever before. The existing repertoire of molecular imaging techniques has been exceedingly fruitful for both preclinical applications and clinical diagnosis, but to date, no technique combines exquisite tracer detection sensitivity with quantitativeness for longitudinal, months-long in vivo imaging deep in tissue. Magnetic particle imaging (MPI) is an emerging technique that directly images the strong electronic magnetization of clinically safe superparamagnetic iron oxide (SPIO) tracers. Because biological tissues do not produce signals detectable in MPI scanners, MP images have high contrast and sensitivity for SPIO tracers, comparable to nuclear medicine techniques. The MPI signal is also robust and linearly quantitative of SPIO tracers anywhere in the body. Hence, MPI may be useful in applications ranging from coronary angiography to stem cell tracking and has potential for human translation. In this chapter, we describe the differences between MPI and MRI physics, since most MRI-tailored SPIOs are not effective as MPI tracers. This chapter is designed so nanoparticle scientists can design ideal MPI-tailored SPIOs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14(4):431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.

    Article  CAS  PubMed  Google Scholar 

  3. Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54(5):L1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rahmer J, Halkola A, Gleich B, Schmale I, Borgert J. First experimental evidence of the feasibility of multi-color magnetic particle imaging. Phys Med Biol. 2015;60(5):1775–91.

    Article  CAS  PubMed  Google Scholar 

  6. Rahmer J, Weizenecker J, Gleich B, Borgert J. Analysis of a 3-D system function measured for magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(6):1289–99.

    Article  PubMed  Google Scholar 

  7. Franke J, Heinen U, Matthies L, Niemann V, Jaspard F, Heidenreich M, Buzug T. First hybrid MPI-MRI imaging system as integrated design for mice and rats: description of the instrumentation setup. In: Magnetic particle imaging (IWMPI), 2013 international workshop on 2013, p. 1–1.

    Google Scholar 

  8. Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR, Konkle J, Goodwill PW, Halkola A, Rahmer J, Borgert J, Conolly SM, Krishnan KM. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging. 2015;34(5):1077–84.

    Article  PubMed  Google Scholar 

  9. Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys. 2012;111(7):7B318–7B3185.

    Google Scholar 

  10. Konkle JJ, Goodwill PW, Hensley DW, Orendorff RD, Lustig M, Conolly SM. A convex formulation for magnetic particle imaging X-space reconstruction. PLoS One. 2015;10(10):e0140137.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lu K, Goodwill PW, Saritas EU, Zheng B, Conolly SM. Linearity and shift invariance for quantitative magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(c):1565–75.

    Article  PubMed  Google Scholar 

  12. Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum. 2012;83(3):033708.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zheng B, Vazin T, Goodwill PW, Conway A, Verma A, Ulku Saritas E, Schaffer D, Conolly SM. Magnetic particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep. 2015;5:14055.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging. 2010;29(11):1851–9.

    Article  PubMed  Google Scholar 

  15. Goodwill PW, Conolly SM. Multidimensional x-space magnetic particle imaging. IEEE Trans Med Imaging. 2011;30(9):1581–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.

    Article  CAS  PubMed  Google Scholar 

  17. Goodwill PW, Konkle JJ, Zheng B, Saritas EU, Conolly SM. Projection x-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(5):1076–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Croft LR, Goodwill PW, Conolly SM. Relaxation in x-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(12):2335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Croft LR, Goodwill PW, Konkle JJ, Arami H, Price DA, Li AX, Saritas EU, Conolly SM. Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys. 2016;43(1):424–35.

    Article  PubMed  Google Scholar 

  20. Zheng B, von See MP, Yu E, Gunel B, Lu K, Vazin T, Schaffer DV, Goodwill PW, Conolly SM. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics. 2016;6(3):291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K, Zheng B, Conolly SM. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson. 2013;229:116–26.

    Article  CAS  PubMed  Google Scholar 

  22. Saritas EU, Goodwill PW, Zhang GZ, Conolly SM. Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(9):1600–10.

    Article  PubMed  Google Scholar 

  23. Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J. Magnetic particle imaging: current developments and future directions. Int J Nanomed. 2015;10:3097–114.

    Article  CAS  Google Scholar 

  24. Graeser M, Knopp T, Grüttner M, Sattel TF, Buzug TM. Analog receive signal processing for magnetic particle imaging. Med Phys. 2013;40(4):042303.

    Article  PubMed  Google Scholar 

  25. Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys. 2011;38(9):5200–7.

    Article  PubMed  Google Scholar 

  26. Saritas EU, Goodwill PW, Conolly SM. Effects of pulse duration on magnetostimulation thresholds. Med Phys. 2015;42(6):3005–12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett. 2011;98(18):182502.

    Article  Google Scholar 

  28. Eberbeck D, Dennis CL, Huls NF, Krycka KL, Gruttner C, Westphal F. Multicore magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2013;49(1):269–74.

    Article  Google Scholar 

  29. Wawrzik T, Kuhlmann C, Ludwig F, Schilling M. Scanner setup and reconstruction for three-dimensional magnetic particle imaging. SPIE Med Imaging. 2013;8672:86721B–86721B–8.

    Google Scholar 

  30. Lak A, Wawrzik T, Ludwig F, Schilling M. Synthesis of single-core iron oxide nanoparticles as a tracer for magnetic particle imaging. Int Workshop Magn Particle Imaging. 2012. pp. 93–97.

    Google Scholar 

  31. Vogel P, Ruckert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC. Traveling wave magnetic particle imaging. IEEE Trans Med Imaging. 2014;33(2):400–7.

    Article  PubMed  Google Scholar 

  32. Murase K, Hiratsuka S, Song R, Takeuchi Y. Development of a system for magnetic particle imaging using neodymium magnets and gradiometer. Jpn J Appl Phys. 2014;53(6):067001.

    Article  Google Scholar 

  33. Nishimoto K, Mimura A, Aoki M, Banura N, Murase K. Application of magnetic particle imaging to pulmonary imaging using nebulized magnetic nanoparticles. Open J Med Imaging. 2015;5(2):49.

    Article  Google Scholar 

  34. Arami H, Krishnan KM. Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. J Appl Phys. 2014;115(17):17B306.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015.

    Google Scholar 

  36. Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM, Krishnan KM. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials. 2015;52:251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomitaka A, Arami H, Gandhi S, Krishnan KM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale. 2015.

    Google Scholar 

  38. Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38(3):1619.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferguson RM, Minard KR, Krishnan KM. Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater. 2009;321:1548–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bauer LM, Situ SF, Griswold MA, Samia ACS. Magnetic particle imaging tracers: state-of-the-art and future directions. J Phys Chem Lett. 2015;6(13):2509–17.

    Article  CAS  PubMed  Google Scholar 

  41. Bulte JWM, Walczak P, Janowski M, Krishnan KM, Arami H, Halkola A, Gleich B, Rahmer J. Quantitative “hot spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography. 2015;1(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Visscher M, Waanders S, Krooshoop HJG, ten Haken B. Selective detection of magnetic nanoparticles in biomedical applications using differential magnetometry. J Magn Magn Mater. 2014;365:31–9.

    Article  CAS  Google Scholar 

  43. Visscher M, Waanders S, Pouw J, ten Haken B. Depth limitations for in vivo magnetic nanoparticle detection with a compact handheld device. J Magn Magn Mater. 2015;380:246–50.

    Article  CAS  Google Scholar 

  44. Rauwerdink AM, Weaver JB. Viscous effects on nanoparticle magnetization harmonics. J Magn Magn Mater. 2010;322(6):609–13.

    Article  CAS  Google Scholar 

  45. Weaver JB, Kuehlert E. Measurement of magnetic nanoparticle relaxation time. Med Phys. 2012;39(5):2765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Knopp T, Them K, Kaul M, Gdaniec N. Joint reconstruction of non-overlapping magnetic particle imaging focus-field data. Phys Med Biol. 2015;60(8):L15–21.

    Article  CAS  PubMed  Google Scholar 

  47. Weber A, Werner F, Weizenecker J, Buzug TM, Knopp T. Artifact free reconstruction with the system matrix approach by overscanning the field-free-point trajectory in magnetic particle imaging. Phys Med Biol. 2015;61(2):475.

    Article  PubMed  Google Scholar 

  48. Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(2):338–47.

    Article  PubMed  Google Scholar 

  49. Konkle JJ, Goodwill PW, Saritas EU, Zheng B, Lu K, Conolly SM. Twenty-fold acceleration of 3D projection reconstruction MPI. Biomed Tech. 2013;58(6):565–76.

    Article  Google Scholar 

  50. Chu K, Kim M, Jeong S-W, Kim SU, Yoon B-W. Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett. 2003;343(2):129–33.

    Article  CAS  PubMed  Google Scholar 

  51. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;101(32):11839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De Feo D, Merlini A, Laterza C, Martino G. Neural stem cell transplantation in central nervous system disorders. Curr Opin Neurol. 2012;25(3):322–33.

    Article  PubMed  Google Scholar 

  53. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol. 2014;5:1–6.

    Article  CAS  Google Scholar 

  54. Hoogduijn MJ, Roemeling-van Rhijn M, Engela AU, Korevaar SS, Mensah FKF, Franquesa M, de Bruin RWF, Betjes MGH, Weimar W, Baan CC. Mesenchymal stem cells induce an inflammatory response after intravenous infusion. Stem Cells Dev. 2013;22(21):2825–35.

    Article  CAS  PubMed  Google Scholar 

  55. Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg. 2009;110(6):1189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu Y, Zhao RCH. The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev. 2012;8(1):243–50.

    Article  CAS  PubMed  Google Scholar 

  57. Ge J, Guo L, Wang S, Zhang Y, Cai T, Zhao RCH, Wu Y. The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev Rep. 2014;10:295–303.

    Article  CAS  Google Scholar 

  58. Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, Baan CC, Dahlke MH, Hoogduijn MJ. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–92.

    Article  CAS  PubMed  Google Scholar 

  60. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001;169:12–20.

    Article  CAS  PubMed  Google Scholar 

  61. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I, Young RG, Marcelino M, Pittenger MF, Solaiyappan M, Boston RC, Tsui BMW, Wahl RL, Bulte JWM. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 2005;112(10):1451–61.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed. 2005;18(6):383–9.

    Article  CAS  PubMed  Google Scholar 

  63. Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.

    CAS  PubMed  Google Scholar 

  64. Shahram M, Milanfar P. Imaging below the diffraction limit: a statistical analysis. IEEE Trans Image Process. 2004;13(5):677–89.

    Article  PubMed  Google Scholar 

  65. Lui YW, Tang ER, Allmendinger AM, Spektor V. Evaluation of CT perfusion in the setting of cerebral ischemia: patterns and pitfalls. Am J Neuroradiol. 2010;31(9):1552–63.

    Article  CAS  PubMed  Google Scholar 

  66. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJS, Taouli B, Choyke PL. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shah SA, Reeves DB, Ferguson RM, Weaver JB, Krishnan KM. Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field. Phys Rev B Condens Matter Mater Phys. 2015;92(9).

    Google Scholar 

  68. Shah SA, Ferguson RM, Krishnan KM. Slew-rate dependence of tracer magnetization response in magnetic particle imaging. J Appl Phys. 2014;116(16):163910.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brown Jr WF. Thermal fluctuations of a single-domain particle. Phys Rev. 1963;130(5):1677.

    Article  Google Scholar 

  70. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    Article  CAS  PubMed  Google Scholar 

  71. Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–11.

    Article  CAS  PubMed  Google Scholar 

  72. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

    Article  CAS  PubMed  Google Scholar 

  73. Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci U S A. 2007;104(3):932–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hensley D, Goodwill P, Croft L, Conolly S. Preliminary experimental X-space color MPI. In: Magnetic particle imaging (IWMPI), 2015 5th international workshop on 2015, p. 1–1.

    Google Scholar 

  75. Zhang W, Zheng B, Goodwill P, Conolly S. A custom low-noise preamplifier for magnetic particle imaging. In: Magnetic particle imaging (IWMPI), 2015 5th international workshop on 2015, p. 1–1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zheng, B. et al. (2017). Magnetic Particle Imaging. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_4

Download citation

Publish with us

Policies and ethics