Imaging and Therapeutic Potential of Extracellular Vesicles

  • Max Piffoux
  • Florence Gazeau
  • Claire WilhelmEmail author
  • Amanda K. A. SilvaEmail author


Extracellular vesicles (EVs) are multifaceted subcellular entities that act as a far-reaching intercellular communication pathway controlling cell signaling. Such unique properties stem from the extraordinary ability of EVs to transfer biomolecules between neighbor and distal cells. The possibility of engineering EVs for imaging or therapeutic purposes is now an active research field. On the one side, EV engineering with an image tracer aims to enable biodistribution investigation, which is fundamental for deciphering the complex fate of EV in the organism. On the other side, vesicle engineering with drug or heating nanoparticles attempts to translate such cell communication effectors into an intrinsically biocompatible bio-inspired vector for therapy. Herein we provide an overview of critical steps in EV engineering such as production, loading, isolation, and characterization. We also focus on recent studies evidencing that EVs may be tracked by imaging approaches or harnessed for the delivery of therapeutic agents via the introduction of exogenous cargoes such as nanoparticles, fluorescent dyes, nucleic acids, or drugs. Future investigations may bring along ultimate proofs to ensure the safety and efficacy of EVs loaded with exogenous cargoes including reproducible and scalable production, loading and isolation techniques, rigorous characterization, as well as thorough pharmacokinetic and toxicological studies. The advances in perspectives are expected to overcome current challenges in the field and move engineered EVs to the clinical practice.


Extracellular vesicles Exosomes Microvesicles Production Loading Imaging and therapy 


  1. 1.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak M. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20(9):1487–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Hugel B, Martínez MC, Kunzelmann C, Freyssinet J-M. Membrane microparticles: two sides of the coin. Physiology. 2005;20(1):22–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838–48.PubMedCrossRefGoogle Scholar
  4. 4.
    Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010;107(9):1047–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res. 2003;109(4):175–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 2014;159(3):499–513.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Camacho L, Guerrero P, Marchetti D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS One. 2013;8(9):e73790.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–88.PubMedCrossRefGoogle Scholar
  9. 9.
    Krause M, Samoylenko A, Vainio SJ. Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front Cell Dev Biol. 2015;3:65.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Owens AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108(10):1284–97.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, Albert A, Shnayder R, Gobezie R, Nigrovic PA. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013;5(2):235–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Holder BS, Tower CL, Jones CJ, Aplin JD, Abrahams VM. Heightened pro-inflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans. Biol Reprod. 2012;86(4):103.PubMedCrossRefGoogle Scholar
  13. 13.
    Prakash PS, Caldwell CC, Lentsch AB, Pritts TA, Robinson BR. Human microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response. J Trauma Acute Care Surg. 2012;73(2):401–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10(5):619–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L. Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 2007;67(7):2912–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta. 2012;1826(1):103–11.PubMedGoogle Scholar
  17. 17.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.PubMedGoogle Scholar
  18. 18.
    Pan B-T, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21(R1):R125–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Akers J, Gonda D, Kim R, Carter B, Chen C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.PubMedGoogle Scholar
  22. 22.
    Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys. 2010;39:407–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, Brisson AR. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014;12(5):614–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676–705.PubMedCrossRefGoogle Scholar
  26. 26.
    Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, Hood L, Lin B. Proteomic analysis of human prostasomes. Prostate. 2003;56(2):150–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine. PNAS. 2004;101(36):13368–73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 2011;34(1):13–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Admyre C, Johansson SM, Qazi KR, Filén J-J, Lahesmaa R, Norman M, Neve EPA, Scheynius A, Gabrielsson S. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969–78.PubMedCrossRefGoogle Scholar
  31. 31.
    Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol. 2008;79(1):12–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Andre F, Schartz NEC, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002;360(9329):295–305.PubMedCrossRefGoogle Scholar
  33. 33.
    Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, Radtke B, Splinter PL, LaRusso NF. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol. 2010;299(4):G990–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tanimura A, McGregor DH, Anderson HC. Matrix vesicles in atherosclerotic calcification. Exp Biol Med. 1983;172(2):173–7.CrossRefGoogle Scholar
  35. 35.
    Fischer von Mollard G, Mignery GA, Baumert M, Perin MS, Hanson TJ, Burger PM, Jahn R, Südhof TC. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. PNAS. 1990;87(5):1988–92.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Le Pecq J-B. Dexosomes as a therapeutic cancer vaccine: from bench to bedside. Blood Cells Mol Dis. 2005;35(2):129–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Chaput N, Schartz N, Andre F, Zitvogel L. Exosomes for immunotherapy of cancer. New trends in cancer for the 21st century. New York: Springer; 2003. p. 215–21.Google Scholar
  38. 38.
    Shen Y, Torchia MLG, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12(4):509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yeo RWY, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011;6(4):481–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Riches A, Campbell E, Borger E, Powis S. Regulation of exosome release from mammary epithelial and breast cancer cells—a new regulatory pathway. Eur J Cancer. 2014;50(5):1025–34.PubMedCrossRefGoogle Scholar
  42. 42.
    Sun L, Wang H-X, Zhu X-J, Wu P-H, Chen W-Q, Zou P, Li Q-B, Chen Z-C. Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro. Acta Pharmacol Sin. 2014;35(3):381–93.PubMedCrossRefGoogle Scholar
  43. 43.
    King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(1):421.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Headland SE, Jones HR, D'Sa AS, Perretti M, Norling LV. Cutting-edge analysis of extracellular microparticles using imagestreamx imaging flow cytometry. Sci Rep. 2014;4:5237.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pick H, Schmid EL, Tairi A-P, Ilegems E, Hovius R, Vogel H. Investigating Cellular Signaling Reactions in Single Attoliter Vesicles J Am Chem Soc. 2005;127(9):2908–12.PubMedGoogle Scholar
  46. 46.
    Mao Z, Cartier R, Hohl A, Farinacci M, Dorhoi A, Nguyen T-L, Mulvaney P, Ralston J, Kaufmann SHE, Möhwald H, Wang D. Cells as Factories for Humanized Encapsulation Nano Lett. 2011;11(5):2152–6.PubMedGoogle Scholar
  47. 47.
    Momen-Heravi F, Bala S, Kodys K, Szabo G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015:5.Google Scholar
  48. 48.
    Machluf M, Bronshtein T. Liposomal compositions and uses of same patent. 2010;US20120164214 A1.Google Scholar
  49. 49.
    Toledano Furman NE, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, Baruch L, Machluf M. Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 2013;13(7):3248–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Jo W, Jeong D, Kim J, Cho S, Jang SC, Han C, Kang JY, Gho YS, Park J. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 2014;14(7):1261–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Jang SC, Kim OY, Yoon CM, Choi D-S, Roh T-Y, Park J, Nilsson J, Lötvall J, Kim Y-K, Gho YS. Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors ACS Nano. 2013;7(9):7698–710.PubMedGoogle Scholar
  52. 52.
    Jo W, Kim J, Yoon J, Jeong D, Cho S, Jeong H, Yoon Y, Kim S, Gho Y, Park J. Large-scale generation of cell-derived nanovesicles. Nanoscale. 2014;6(20):12056–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Yoon J, Jo W, Jeong D, Kim J, Jeong H, Park J. Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery. Biomaterials. 2015;59:12–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Yun S-S, Yoon SY, Song M-K, Im S-H, Kim S, Lee J-H, Yang S. Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction. Lab Chip. 2010;10(11):1442–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Silva AKA, Di Corato R, Pellegrino T, Chat S, Pugliese G, Luciani N, Gazeau F, Wilhelm C. Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale. 2013;5(23):11374–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Silva AK, Luciani N, Gazeau F, Aubertin K, Bonneau S, Chauvierre C, Letourneur D, Wilhelm C. Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomed Nanotech Biol Med. 2015;11(3):645–55.CrossRefGoogle Scholar
  57. 57.
    Silva AK, Kolosnjaj-Tabi J, Bonneau S, Marangon I, Boggetto N, Aubertin K, Clément O, Bureau MF, Luciani N, Gazeau F. Magnetic and photoresponsive theranosomes: translating cell-released vesicles into smart nanovectors for cancer therapy. ACS Nano. 2013;7(6):4954–66.PubMedCrossRefGoogle Scholar
  58. 58.
    Mao Z, Cartier R, Hohl A, Farinacci M, Dorhoi A, Nguyen T-L, Mulvaney P, Ralston J, Kaufmann SH, Möhwald H. Cells as factories for humanized encapsulation. Nano Lett. 2011;11(5):2152–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Wiklander OPB, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow Y, Heldring N, Alvarez-Erviti L, Smith CIE, Le Blanc K, Macchiarini P, Jungebluth P, Wood MJA, Andaloussi SEL. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015:4.  10.3402/jev.v4.26316.
  60. 60.
    Wahlgren J, Karlson TDL, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes Nucleic Acids Res. 2012:1–12.Google Scholar
  61. 61.
    Ohno S-I, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, Strobel T, Breakefield XO, Saydam O. Genetically Engineered Microvesicles Carrying Suicide mRNA/Protein Inhibit Schwannoma Tumor Growth Mol Ther. 2013;21(1):101–8.PubMedGoogle Scholar
  63. 63.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    van Balkom BW, Eisele AS, Pegtel DM, Bervoets S, Verhaar MC. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles. 2015;4:26760.PubMedGoogle Scholar
  65. 65.
    Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar RL, Butte MJ. Differential fates of biomolecules delivered to target cells via extracellular vesicles. PNAS. 2015;112(12):E1433–42.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotech. 2011;29(4):341–5.CrossRefGoogle Scholar
  67. 67.
    Shen B, Wu N, Yang J-M, Gould SJ. Protein Targeting to Exosomes/Microvesicles by Plasma Membrane Anchors J Biol Chem. 2011;286(16):14383–95.PubMedGoogle Scholar
  68. 68.
    Vats N, Wilhelm C, Rautou P-E, Poirier-Quinot M, Péchoux C, Devue C, Boulanger CM, Gazeau F. Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information. Nanomedicine. 2010;5(5):727–38.PubMedCrossRefGoogle Scholar
  69. 69.
    Rank A, Nieuwland R, Crispin A, Grützner S, Iberer M, Toth B, Pihusch R. Clearance of platelet microparticles in vivo. Platelets. 2011;22(2):111–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang H-G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang H-G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin V, Lockman P, Bai S. Exosome Delivered Anticancer Drugs Across the Blood-Brain Barrier for Brain Cancer Therapy in Danio Rerio Pharm Res. 2015;32(6):2003–14.PubMedGoogle Scholar
  74. 74.
    Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Döpp YA, van den Bos AG, Bosman GJ, van Berkel TJ. Liver Kupffer cells rapidly remove red blood cell–derived vesicles from the circulation by scavenger receptors. Blood. 2005;105(5):2141–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Aaseth J, Alexander J, Norseth T. Uptake of 51CrChromate by human erythrocytes–a role of glutathione. Acta Pharmacol Toxicol. 1982;50(4):310–5.CrossRefGoogle Scholar
  76. 76.
    Kooijmans SA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJ, Schiffelers RM, Raemdonck K, Vader P. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. 2013;172(1):229–38.PubMedCrossRefGoogle Scholar
  77. 77.
    Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    György B, Módos K, Pállinger É, Pálóczi K, Pásztói M, Misják P, Deli MA, Sipos Á, Szalai A, Voszka I, Polgár A, Tóth K, Csete M, Nagy G, Gay S, Falus A, Kittel Á, Buzás EI. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011;117(4):e39–48.PubMedCrossRefGoogle Scholar
  79. 79.
    Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006:3.22.1–3.9.Google Scholar
  80. 80.
    Lamparski HG, Metha-Damani A, Yao J-Y, Patel S, Hsu D-H, Ruegg C, Le Pecq J-B. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 2002;270(2):211–26.PubMedCrossRefGoogle Scholar
  81. 81.
    Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 2010;9(2):197–208.PubMedCrossRefGoogle Scholar
  82. 82.
    Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics. 2013;12(3):587–98.PubMedCrossRefGoogle Scholar
  83. 83.
    Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012;56(2):293–304.PubMedCrossRefGoogle Scholar
  84. 84.
    Chen C, Skog J, Hsu C-H, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10(4):505–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee K, Shao H, Weissleder R, Lee H. Acoustic Purification of Extracellular Microvesicles ACS Nano. 2015;9(3):2321–7.PubMedGoogle Scholar
  86. 86.
    Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography J Extracell Vesicles. 2014:3.  10.3402/jev.v3.23430.
  87. 87.
    Welton JL, Webber JP, Botos L-A, Jones M, Clayton A. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles. 2015;4.Google Scholar
  88. 88.
    Filipe V, Hawe A, Jiskoot W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates Pharm Res. 2010;27(5):796–810.PubMedGoogle Scholar
  89. 89.
    Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost. 2013;11(s1):36–45.PubMedGoogle Scholar
  90. 90.
    Hoo C, Starostin N, West P, Mecartney M. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res. 2008;10(1):89–96.CrossRefGoogle Scholar
  91. 91.
    Momen-Heravi F, Balaj L, Alian S, Tigges J, Toxavidis V, Ericsson M, Distel RJ, Ivanov AR, Skog J, Kuo WP. Alternative methods for characterization of extracellular vesicles. Front Physiol. 2012;3:354.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, Hole P, Carr B, Redman CWG, Harris AL, Dobson PJ, Harrison P, Sargent IL. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomed Nanotech Biol Med. 2011;7(6):780–8.CrossRefGoogle Scholar
  93. 93.
    van der Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–92.PubMedCrossRefGoogle Scholar
  94. 94.
    Yuana Y, Oosterkamp T, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina R, Osanto S. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost. 2010;8(2):315–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Kanno T, Yamada T, Iwabuki H, Tanaka H, Kuroda SI, Tanizawa K, Kawai T. Size distribution measurement of vesicles by atomic force microscopy. Anal Biochem. 2002;309(2):196–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Van Der Pol E, Hoekstra AG, Sturk A, Otto C, Van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596–607.PubMedCrossRefGoogle Scholar
  97. 97.
    Andriola Silva AK, Di Corato R, Gazeau F, Pellegrino T, Wilhelm C. Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors. Nanomedicine. 2012;7(11):1713–27.PubMedCrossRefGoogle Scholar
  98. 98.
    Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost. 2010;8(11):2571–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Arraud N, Gounou C, Linares R, Brisson AR. A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles. J Thromb Haemost. 2015;13(2):237–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Palomo L, Casal E, Royo F, Cabrera D, van-Liempd S, Falcon-Perez JM. Considerations for applying metabolomics to the analysis of extracellular vesicles. Front Immunol. 2014;5:651.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR. Mass spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res. 2015;14:2367–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:10.3402.Google Scholar
  103. 103.
    Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2:10.3402Google Scholar
  104. 104.
    Al Faraj A, Gazeau F, Wilhelm C, Devue C, Guérin CL, Péchoux C, Paradis V, Clément O, Boulanger CM, Rautou P-E. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice. Radiology. 2012;263(1):169–78.PubMedCrossRefGoogle Scholar
  105. 105.
    Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C, Camussi G. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med. 2014;33(5):1055–63.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire CA, Chen JW, Tannous BA, Breakefield XO. Dynamic Biodistribution of Extracellular Vesicles in Vivo Using a Multimodal Imaging Reporter ACS Nano. 2014;8(1):483–94.PubMedGoogle Scholar
  107. 107.
    Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang R, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater. 2013;2013:1.Google Scholar
  109. 109.
    Yoo J-W, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–35.PubMedCrossRefGoogle Scholar
  110. 110.
    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846(1):75–87.PubMedGoogle Scholar
  111. 111.
    Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM. Exosomes as Immunotheranostic Nanoparticles Clin Ther. 2014;36(6):820–9.PubMedGoogle Scholar
  112. 112.
    Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405.PubMedCrossRefGoogle Scholar
  113. 113.
    Yin W, Ouyang S, Li Y, Xiao B, Yang H. Immature Dendritic Cell-Derived Exosomes: a Promise Subcellular Vaccine for Autoimmunity Inflammation. 2013;36(1):232–40.PubMedGoogle Scholar
  114. 114.
    Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90.PubMedCrossRefGoogle Scholar
  115. 115.
    Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335(1):201–4.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes ComplexesUMR 7057, CNRS and Université Paris DiderotParisFrance

Personalised recommendations