Skip to main content

Bismuth-Based Nanoparticles for CT Imaging

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Bismuth (Z = 83) is the heaviest stable nonradioactive element with a strong X-ray attenuation power. On the other hand, bismuth compounds are considered to be nontoxic compared to those of its heavy metal neighbors such as Hg, Tl, and Pb. Despite the venerable history of its applications in treating cephalitis and stomach ulcers, bismuth and its small-molecule compounds have not afforded clinically useful CT contrast agents due largely to the low solubility of such compounds in aqueous solutions. In the last few years, bismuth-containing nanoparticles have emerged as a promising platform for the development of

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51(13):R29–43.

    Article  PubMed  Google Scholar 

  2. Sandborg M, Christoffersson JO, Carlsson GA, Almén T, Dance DR. The physical performance of different x-ray contrast agents: calculations using a Monte Carlo model of the imaging chain. Phys Med Biol. 1995;40(7):1209–24.

    Article  CAS  PubMed  Google Scholar 

  3. Lumbroso P, Dick CE. X-ray attenuation properties of radiographic contrast media. Med Phys. 1987;14(5):752–8.

    Article  CAS  PubMed  Google Scholar 

  4. Frenzel T, Lawaczeck R, Taupitz M, Jost G, Lohrke J, Sieber MA, Pietsch H. Contrast media for x-ray and magnetic resonance imaging development, current status and future perspectives. Invest Radiol. 2015;50(9):6710–8.

    Article  Google Scholar 

  5. Yu SB, Watson AD. Metal-based x-ray contrast media. Chem Rev. 1999;99(9):2353–78.

    Article  CAS  PubMed  Google Scholar 

  6. Havron A, Davis MA, Selter SE, Paskins-Hurlburt AJ, Hessel SJ. Heavy metal particulate contrast materials for computed tomography of the liver. J Comput Assist Tomogr. 1980;4(5):642–8.

    Article  CAS  PubMed  Google Scholar 

  7. Seltzer SE, Adams DF, Davis MA, Hessel SJ, Havron A, Judy PF, Paskins-Hurlburt AJ, Hollenberg NK. Hepatic contrast agents for computed tomography: high atomic number particulate material. J Comput Assist Tomogr. 1981;5(3):370–4.

    Article  CAS  PubMed  Google Scholar 

  8. Abbatt JD. History of the use and toxicity of thorotrast. Environ Res. 1979;18(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  9. Janower ML, Miettinen OS, Flynn MJ. Effects of long-term thorotrast exposure. Radiology. 1972;103(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  10. Becker N, Liebermann D, Wesch H, Van Kaick G. Mortality among thorotrast-exposed patients and an unexposed comparison group in the German Thorotrast study. Eur J Cancer. 2008;44(9):1259–68.

    Article  CAS  PubMed  Google Scholar 

  11. Grainger RG. Intravascular contrast media-the past, the present and the future. Br J Radiol. 1982;55(649):1–18.

    Article  CAS  PubMed  Google Scholar 

  12. McClennan BL. Ionic and nonionic iodinated contrast media: evolution and strategies for use. Am J Roentgenol. 1990;155(2):225–33.

    Article  CAS  Google Scholar 

  13. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    Article  CAS  PubMed  Google Scholar 

  14. Krause W. Delivery of diagnostic agents in computed tomography. Adv Drug Deliv Rev. 1999;37(1-3):159–73.

    Article  CAS  PubMed  Google Scholar 

  15. Wiberg E, Holleman AF, Wiberg N (2001) Inorganic chemistry. Academic Press.

    Google Scholar 

  16. de Marcillac P, Coron N, Dambier G, Leblanc J, Moalic JP. Experimental detection of alpha-particles from the radioactive decay of natural bismuth. Nature. 2003;422(6934):876–8.

    Article  PubMed  Google Scholar 

  17. Miersch L, Rueffer T, Lang H, Schulze S, Hietschold M, Zahn D, Mehring M. A novel water-soluble hexanuclear bismuth oxido cluster-synthesis, structure and complexation with polyacrylate. Eur J Inorg Chem. 2010;30:4763–9.

    Article  Google Scholar 

  18. Briand GG, Burford N. Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev. 1999;99(9):2601–58.

    Article  CAS  PubMed  Google Scholar 

  19. Sadler PJ, Li HY, Sun HZ. Coordination chemistry of metals in medicine: target sites for bismuth. Coord Chem Rev. 1999;185-6:689-09.

    Google Scholar 

  20. Maile FJ, Pfaff G, Reynders P. Effect pigments: past, present and future. Prog Org Coat. 2005;54(3):150–63.

    Article  CAS  Google Scholar 

  21. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new x-ray contrast agent. Br J Radiol. 2006;79(939):248–53.

    Article  CAS  PubMed  Google Scholar 

  22. Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44(10):957–68.

    Article  CAS  PubMed  Google Scholar 

  23. Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.

    Article  CAS  PubMed  Google Scholar 

  24. Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009;6(11):1175–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105(4):1547–62.

    Article  CAS  PubMed  Google Scholar 

  26. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118–22.

    Article  CAS  PubMed  Google Scholar 

  27. Ai K, Liu Y, Liu J, Yuan Q, He Y, Lu L. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv Mater. 2011;23(42):4886–91.

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Ai K, Lu L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res. 2012;45(10):1817–27.

    Article  CAS  PubMed  Google Scholar 

  29. Brown AL, Naha PC, Benavides-Montes V, Litt HI, Goforth AM, Cormode DP. Synthesis, x-ray opacity, and biological compatibility of ultra-high payload elemental bismuth nanoparticle x-ray contrast agents. Chem Mater. 2014;26(7):2266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perera VS, Hao J, Gao M, Gough M, Zavalij PY, Flask C, Basilion JP, Huang SD. Nanoparticles of the novel coordination polymer KBi(H2O)2[Fe(CN)6]·H2O as a potential contrast agent for computed tomography. Inorg Chem. 2011;50(17):7910–2.

    Article  CAS  PubMed  Google Scholar 

  31. Christiansen C. X-ray contrast media-an overview. Toxicology. 2005;209(2):185–7.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today. 2013;16(12):477–86.

    Article  CAS  Google Scholar 

  33. Kandanapitiye MS, Gao M, Molter J, Flask CA, Huang SD. Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: toward renal clearable particulate CT contrast agents. Inorg Chem. 2014;53(19):10189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songping D. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, S.D. (2017). Bismuth-Based Nanoparticles for CT Imaging. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_20

Download citation

Publish with us

Policies and ethics