Skip to main content

Theranostic Gold Nanoparticles for CT Imaging

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Gold nanoparticles (GNPs) have unique physical, chemical, and biological properties, which make them ideal candidates for various biomedical applications, including imaging, therapy, and diagnostic systems. Due to the high X-ray attenuation of gold, along with its well-known biosafety, GNPs are highly appropriate for utilizing as computed tomography (CT) contrast agent. GNPs can be fabricated in a variety of shapes and sizes, can be conjugated with various ligands, and can also be used as the core or the shell for hybrid nanoparticles. Additionally, GNPs can be integrated within bigger structures, such as large compound micelles. The development of a single theranostic nanosystem, which combines the therapeutic and diagnostic functions of GNPs, is a promising approach that can considerably improve medical treatment, particularly in oncology. The following chapter describes basic principles and recent studies that utilize GNPs as CT contrast agents, for imaging, therapy, and diagnostics, focusing on multifunctional GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–7. doi:10.1002/smll.200400093.

    Article  CAS  PubMed  Google Scholar 

  2. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759. doi:10.1039/b806051g.

    Article  CAS  PubMed  Google Scholar 

  3. Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85:101–13. doi:10.1259/bjr/59448833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sean Norman R, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL. Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008;8:302–6. doi:10.1021/nl0727056.

    Article  PubMed  CAS  Google Scholar 

  5. Von Maltzahn G, Park J-H, Agrawal A, Bandaru NK, Das SK, Sailor MJ, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009;69:3892–900. doi:10.1158/0008-5472.CAN-08-4242.

    Article  PubMed Central  CAS  Google Scholar 

  6. Minati L, Antonini V, Torrengo S, Serra MD, Boustta M, Leclercq X, et al. Sustained in vitro release and cell uptake of doxorubicin adsorbed onto gold nanoparticles and covered by a polyelectrolyte complex layer. Int J Pharm. 2012;438:45–52. doi:10.1016/j.ijpharm.2012.08.057.

    Article  CAS  PubMed  Google Scholar 

  7. Rand D, Ortiz V, Liu Y, Derdak Z, Wands JR, Tatíček M, et al. Nanomaterials for X-ray imaging: gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma. Nano Lett. 2011;11:2678–83. doi:10.1021/nl200858y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8:4593–6. doi:10.1021/nl8029114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomed. 2011;6:2859. doi:10.2147/IJN.S25446.

    Article  CAS  Google Scholar 

  10. Jakobsohn K, Motiei M, Sinvani M, Popovtzer R. Towards real-time detection of tumor margins using photothermal imaging of immune-targeted gold nanoparticles. Int J Nanomed. 2012;7:4707–13. doi:10.2147/IJN.S34157.

    CAS  Google Scholar 

  11. Shilo M, Reuveni T, Motiei M, Popovtzer R. Nanoparticles as computed tomography contrast agents: current status and future perspectives. Nanomedicine. 2012;7:257–69. doi:10.2217/nnm.11.190.

    Article  CAS  PubMed  Google Scholar 

  12. Huang H-C, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155:344–57. doi:10.1016/j.jconrel.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  13. Liu D, Wang Z, Jiang X. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale. 2011;3:1421–33. doi:10.1039/c0nr00887g.

    Article  CAS  PubMed  Google Scholar 

  14. Yu S, Watson AD, Bismuth B. Metal-based X-ray contrast media. 1999.

    Google Scholar 

  15. Xu C, Tung GA, Sun S. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater. 2008;20:4167–9. doi:10.1021/cm8008418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27. doi:10.1038/nrd2591.

    Article  CAS  PubMed  Google Scholar 

  17. Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T. Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review. Biomaterials. 2010;31:6249–68. doi:10.1016/j.biomaterials.2010.04.066.

    Article  CAS  PubMed  Google Scholar 

  18. Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology. 2002;223:432–8. doi:10.1148/radiol.2232010241.

    Article  PubMed  Google Scholar 

  19. Schirra CO, Brendel B, Anastasio MA, Roessl E. Spectral CT: a technology primer for contrast agent development. Contrast Media Mol Imaging 9:62–70. doi: 10.1002/cmmi.1573.

  20. Pan D, Roessl E, Schlomka J-P, Caruthers SD, Senpan A, Scott MJ, et al. Computed tomography in color: NanoK-enhanced spectral CT molecular imaging. Angew Chem Int Ed. 2010;49:9635–9. doi:10.1002/anie.201005657.

    Article  CAS  Google Scholar 

  21. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka J-P, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256:774–82. doi:10.1148/radiol.10092473.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schirra CO, Senpan A, Roessl E, Thran A, Stacy AJ, Wu L, et al. Second generation gold nanobeacons for robust K-edge imaging with multi-energy CT. J Mater Chem. 2012;22:23071–7. doi:10.1039/C2JM35334B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roessl E, Cormode D, Brendel B, Jürgen Engel K, Martens G, Thran A, et al. Preclinical spectral computed tomography of gold nano-particles. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2011;648:S259–64. doi:10.1016/j.nima.2010.11.072.

    Article  CAS  Google Scholar 

  24. Wolf GL. Magnetic resonance imaging and the future of cardiac imaging. Am J Cardiol. 1989;64:E60–3. doi:10.1016/0002-9149(89)90736-4.

    Article  Google Scholar 

  25. Skotland T, Iversen T-G, Sandvig K. New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging. Nanomed Nanotechnol Biol Med. 2010;6:730–7. doi:10.1016/j.nano.2010.05.002.

    Article  CAS  Google Scholar 

  26. Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology. 2010;21:245104. doi:10.1088/0957-4484/21/24/245104.

    Article  PubMed  CAS  Google Scholar 

  27. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129:7661–5. doi:10.1021/ja071471p.

    Article  CAS  PubMed  Google Scholar 

  28. Cai Q-Y, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, et al. Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol. 2007;42:797–806. doi:10.1097/RLI.0b013e31811ecdcd.

    Article  CAS  PubMed  Google Scholar 

  29. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107–19. doi:10.1016/j.biomaterials.2011.10.052.

    Article  CAS  PubMed  Google Scholar 

  30. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248–53. doi:10.1259/bjr/13169882.

    Article  CAS  PubMed  Google Scholar 

  31. Ghaghada KB, Badea CT, Karumbaiah L, Fettig N, Bellamkonda RV, Johnson GA, et al. Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging. Acad Radiol. 2011;18:20–30. doi:10.1016/j.acra.2010.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol. 2014.

    Google Scholar 

  33. Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci U S A. 2010;107:8760–5. doi:10.1073/pnas.1002143107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34:470–80. doi:10.1016/j.biomaterials.2012.09.054.

    Article  CAS  PubMed  Google Scholar 

  35. Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials. 2013;34:1570–80. doi:10.1016/j.biomaterials.2012.11.010.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2013;34:5200–9. doi:10.1016/j.biomaterials.2013.03.009.

    Article  CAS  PubMed  Google Scholar 

  37. Hu D-H, Sheng Z-H, Zhang P-F, Yang D-Z, Liu S-H, Gong P, et al. Hybrid gold–gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale. 2013;5:1624. doi:10.1039/c2nr33543c.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, et al. Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chem Int Ed. 2014;53:156–9. doi:10.1002/anie.201308494.

    Article  CAS  Google Scholar 

  39. Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, et al. Evaluating the pharmacokinetics and in vivo cancer targeting capability of au nanocages by positron emission tomography imaging. ACS Nano. 2012;6:5880–8. doi:10.1021/nn300464r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su N, Dang Y, Liang G, Liu G. Iodine-125-labeled cRGD-gold nanoparticles as tumor-targeted radiosensitizer and imaging agent. Nanoscale Res Lett. 2015;10:160. doi:10.1186/s11671-015-0864-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Song J-T, Yang X-Q, Zhang X-S, Yan D-M, Wang Z-Y, Zhao Y-D. Facile synthesis of gold nanospheres modified by positively charged mesoporous silica, loaded with near-infrared fluorescent dye, for in vivo X-ray computed tomography and fluorescence dual mode imaging. ACS Appl Mater Interfaces. 2015;7:17287–97. doi:10.1021/acsami.5b04359.

    Article  CAS  PubMed  Google Scholar 

  42. Sun I-C, Eun D-K, Koo H, Ko C-Y, Kim H-S, Yi DK, et al. Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew Chem. 2011;123:9520–3. doi:10.1002/ange.201102892.

    Article  Google Scholar 

  43. Zhang J, Li C, Zhang X, Huo S, Jin S, An F-F, et al. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials. 2015;42:103–11. doi:10.1016/j.biomaterials.2014.11.053.

    Article  CAS  PubMed  Google Scholar 

  44. Luo T, Huang P, Gao G, Shen G, Fu S, Cui D, et al. Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express. 2011;19:17030. doi:10.1364/OE.19.017030.

    Article  CAS  PubMed  Google Scholar 

  45. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41:2656–72. doi:10.1039/c2cs15261d.

    Article  CAS  PubMed  Google Scholar 

  46. Lee S, Cha E-J, Park K, Lee S-Y, Hong J-K, Sun I-C, et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chemie. 2008;120:2846–9. doi:10.1002/ange.200705240.

    Article  Google Scholar 

  47. Razgulin A, Ma N, Rao J. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem Soc Rev. 2011;40:4186–216. doi:10.1039/c1cs15035a.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng W, Chen Y, Yan F, Ding L, Ding S, Ju H, et al. Ultrasensitive scanometric strategy for detection of matrix metalloproteinases using a histidine tagged peptide-Au nanoparticle probe. Chem Commun (Camb). 2011;47:2877–9. doi:10.1039/c0cc04441e.

    Article  CAS  Google Scholar 

  49. Park SY, Lee SM, Kim GB, Kim Y-P. Gold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Gold Bull. 2012;45:213–9.

    Article  CAS  Google Scholar 

  50. Tira DS, Focsan M, Ulinici S, Maniu D, Astilean S. Rhodamine B-coated gold nanoparticles as effective “turn-on” fluorescent sensors for detection of Zinc II ions in water. Spectrosc Lett. 2013;47:153–9. doi:10.1080/00387010.2013.782557.

    Article  CAS  Google Scholar 

  51. Hutter E, Maysinger D. Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci. 2013;34:497–507. doi:10.1016/j.tips.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  52. Mohamed MB, Volkov V, Link S, El-sayed MA. The “lightning” gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett. 2000;317:517–23.

    Article  CAS  Google Scholar 

  53. Geddes C, Lakowicz J. Metal-enhanced fluorescence. J Fluoresc. 2002;12:121–9.

    Article  Google Scholar 

  54. Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J, et al. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett. 2009;9:3896–903. doi:10.1021/nl902095q.

    Article  CAS  PubMed  Google Scholar 

  55. Abadeer N, Brennan M, Wilson W, Murphy C. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano. 2014;8:8392–406.

    Article  CAS  PubMed  Google Scholar 

  56. Kang K, Wang J. Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study. J Nanobiotechnology. 2014;12:56. doi:10.1186/s12951-014-0056-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kang KA, Wang J. Smart dual-mode fluorescent gold nanoparticle agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:398–409. doi:10.1002/wnan.1267.

    Article  CAS  PubMed  Google Scholar 

  58. Sun I-C, Eun D-K, Koo H, Ko C-Y, Kim H-S, Yi DK, et al. Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew Chem Int Ed Engl. 2011;50:9348–51. doi:10.1002/anie.201102892.

    Article  CAS  PubMed  Google Scholar 

  59. Chanda N, Shukla R, Zambre A, Mekapothula S, Kulkarni RR, Katti K, et al. An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells. Pharm Res. 2011;28:279–91. doi:10.1007/s11095-010-0276-6.

    Article  CAS  PubMed  Google Scholar 

  60. Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, et al. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials. 2014;35:5814–21. doi:10.1016/j.biomaterials.2014.04.005.

    Article  CAS  PubMed  Google Scholar 

  61. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–6. doi:10.1158/1078-0432.CCR-07-1441.

    Article  CAS  PubMed  Google Scholar 

  62. Beija M, Li Y, Duong HT, Laurent S, Elst LV, Muller RN. Polymer–gold nanohybrids with potential use in bimodal MRI/CT: enhancing the relaxometric properties of Gd(iii) complexes. J Mater Chem. 2012;22:21382. doi:10.1039/c2jm34999j.

    Article  CAS  Google Scholar 

  63. Xie M, Ding L, You Z, Gao D, Yang G, Han H. Robust hybrid nanostructures comprising gold and thiol-functionalized polymer nanoparticles: facile preparation, diverse morphologies and unique properties. J Mater Chem. 2012;22:14108. doi:10.1039/c2jm31228j.

    Article  CAS  Google Scholar 

  64. Han S-Y, Guo Q-H, Xu M-M, Yuan Y-X, Shen L-M, Yao J-L, et al. Tunable fabrication on iron oxide/Au/Ag nanostructures for surface enhanced Raman spectroscopy and magnetic enrichment. J Colloid Interface Sci. 2012;378:51–7. doi:10.1016/j.jcis.2012.04.047.

    Article  CAS  PubMed  Google Scholar 

  65. Guo X, Zhang Q, Sun Y, Zhao Q, Yang J. Lateral etching of core–shell Au@Metal nanorods to metal-tipped Au nanorods with improved catalytic activity. ACS Nano. 2012;6:1165–75. doi:10.1021/nn203793k.

    Article  CAS  PubMed  Google Scholar 

  66. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem. 2004;15:482–90. doi:10.1021/bc034189q.

    Article  CAS  PubMed  Google Scholar 

  67. Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639–44. doi:10.1021/nn800330a.

    Article  CAS  PubMed  Google Scholar 

  68. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5:3679–92. doi:10.1021/nn200007z.

    Article  CAS  PubMed  Google Scholar 

  69. Tomuleasa C, Soritau O, Orza A, Dudea M, Petrushev B, Mosteanu O, et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J Gastrointest Liver Dis. 2012;21:188–96.

    Google Scholar 

  70. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials. 2009;30:6065–75. doi:10.1016/j.biomaterials.2009.07.048.

    Article  CAS  PubMed  Google Scholar 

  71. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11:169–83. doi:10.1080/10717540490433895.

    Article  CAS  PubMed  Google Scholar 

  72. Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chemie Int Ed. 2008;47:1382–95. doi:10.1002/anie.200703039.

    Article  CAS  Google Scholar 

  73. Han G, Ghosh P, De M, Rotello VM. Drug and gene delivery using gold nanoparticles. NanoBiotechnology. 2007;3:40–5. doi:10.1007/s12030-007-0005-3.

    Article  CAS  Google Scholar 

  74. Chen C-C, Lin Y-P, Wang C-W, Tzeng H-C, Wu C-H, Chen Y-C, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc. 2006;128:3709–15. doi:10.1021/ja0570180.

    Article  CAS  PubMed  Google Scholar 

  75. Kim J-H, Yeom J-H, Ko J-J, Han MS, Lee K, Na S-Y, et al. Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. J Biotechnol. 2011;155:287–92. doi:10.1016/j.jbiotec.2011.07.014.

    Article  CAS  PubMed  Google Scholar 

  76. Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, et al. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials. 2012;33:3025–35. doi:10.1016/j.biomaterials.2011.12.045.

    Article  CAS  PubMed  Google Scholar 

  77. Ghosh PS, Kim C-K, Han G, Forbes NS, Rotello VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano. 2008;2:2213–8. doi:10.1021/nn800507t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guo S, Huang Y, Jiang Q, Sun Y, Deng L, Liang Z, et al. Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano. 2010;4:5505–11. doi:10.1021/nn101638u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Conde J, Ambrosone A, Sanz V. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano. 2012;6(9):8316–24.

    Article  CAS  PubMed  Google Scholar 

  80. Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano. 2009;3:80–6. doi:10.1021/nn800702n.

    Article  CAS  PubMed  Google Scholar 

  81. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103:8410–26. doi:10.1021/jp9917648.

    Article  CAS  Google Scholar 

  82. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34:257–64. doi:10.1021/ar960016n.

    Article  CAS  PubMed  Google Scholar 

  83. Curry T, Epstein T, Smith R, Kopelman R. Photothermal therapy of cancer cells mediated by blue hydrogel nanoparticles. Nanomedicine. 2013;8:1577–86. doi:10.2217/nnm.12.190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2010.

    Google Scholar 

  85. Chial HJ, Thompson HB, Splittgerber AG. A spectral study of the charge forms of Coomassie blue G. Anal Biochem. 1993;209:258–66. doi:10.1006/abio.1993.1117.

    Article  CAS  PubMed  Google Scholar 

  86. Choi J, Yang J, Bang D, Park J, Suh J-S, Huh Y-M, et al. Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging. Small. 2012;8:746–53. doi:10.1002/smll.201101789.

    Article  CAS  PubMed  Google Scholar 

  87. El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239:129–35. doi:10.1016/j.canlet.2005.07.035.

    Article  CAS  PubMed  Google Scholar 

  88. Qian W, Murakami M, Ichikawa Y, Che Y. Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J Phys Chem C. 2011;115:23293–8. doi:10.1021/jp2079567.

    Article  CAS  Google Scholar 

  89. Curry TY. Nanoparticles for biomedical applications: photothermal therapy and nuclear delivery. 2013.

    Google Scholar 

  90. Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomed Nanotechnol Biol Med. 2012;8:1355–63. doi:10.1016/j.nano.2012.02.005.

    Article  CAS  Google Scholar 

  91. Zharov VP, Galitovskaya EN, Johnson C, Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med. 2005;37:219–26. doi:10.1002/lsm.20223.

    Article  PubMed  Google Scholar 

  92. Nam J, Won N, Jin H, Chung H, Kim S. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc. 2009;131:13639–45. doi:10.1021/ja902062j.

    Article  CAS  PubMed  Google Scholar 

  93. Hühn D, Govorov A, Gil PR, Parak WJ. Photostimulated Au nanoheaters in polymer and biological media: characterization of mechanical destruction and boiling. Adv Funct Mater. 2012;22:294–303. doi:10.1002/adfm.201101134.

    Article  CAS  Google Scholar 

  94. Murthy AK, Stover RJ, Borwankar AU, Nie GD, Gourisankar S, Truskett TM, et al. Equilibrium gold nanoclusters quenched with biodegradable polymers. ACS Nano. 2013;7:239–51. doi:10.1021/nn303937k.

    Article  CAS  PubMed  Google Scholar 

  95. Letfullin RR, Joenathan C, George TF, Zharov VP. Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine. 2006;1:473–80. doi:10.2217/17435889.1.4.473.

    Article  CAS  PubMed  Google Scholar 

  96. Coronado EA, Encina ER, Stefani FD. Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale. 2011;3:4042–59. doi:10.1039/c1nr10788g.

    Article  CAS  PubMed  Google Scholar 

  97. Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49:N309–15. doi:10.1088/0031-9155/49/18/N03.

    Article  CAS  PubMed  Google Scholar 

  98. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–9. doi:10.1016/j.biomaterials.2007.12.037.

    Article  PubMed  CAS  Google Scholar 

  99. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60:977–85. doi:10.1211/jpp.60.8.0005.

  100. Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat. 2013;137:81–91. doi:10.1007/s10549-012-2338-4.

    Article  CAS  PubMed  Google Scholar 

  101. Roa W, Zhang X, Guo L, Shaw A, Hu X, Xiong Y, et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology. 2009;20:375101. doi:10.1088/0957-4484/20/37/375101.

    Article  PubMed  CAS  Google Scholar 

  102. Bechet D, Couleaud P, Frochot C, Viriot M-L, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26:612–21. doi:10.1016/j.tibtech.2008.07.007.

    Article  CAS  PubMed  Google Scholar 

  103. Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J, Russell DA. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a “Trojan horse”. Photochem Photobiol Sci. 2006;5:727–34. doi:10.1039/b602830f.

    Article  CAS  PubMed  Google Scholar 

  104. Hone D, Walker P, Evans-Gowing R. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir. 2002:2985–7. doi: 10.1021/la0256230.

  105. Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc. 2008;130:10643–7. doi:10.1021/ja801631c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bao G, Mitragotri S, Tong S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng. 2013;15:253–82. doi:10.1146/annurev-bioeng-071812-152409.

    Article  CAS  PubMed  Google Scholar 

  107. Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4:3689–96. doi:10.1021/nn901877h.

    Article  CAS  PubMed  Google Scholar 

  108. Zhu J, Zheng L, Wen S, Tang Y, Shen M, Zhang G, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2014;35:7635–46. doi:10.1016/j.biomaterials.2014.05.046.

    Article  CAS  PubMed  Google Scholar 

  109. Won Y-W, Yoon S-M, Lim KS, Kim Y-H. Self-assembled nanoparticles with dual effects of passive tumor targeting and cancer-selective anticancer effects. Adv Funct Mater. 2012;22:1199–208. doi:10.1002/adfm.201101979.

    Article  CAS  Google Scholar 

  110. Won Y-W, Yoon S-M, Sonn CH, Lee K-M, Kim Y-H. Nano self-assembly of recombinant human gelatin conjugated with α-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano. 2011;5:3839–48. doi:10.1021/nn200173u.

    Article  CAS  PubMed  Google Scholar 

  111. Gogvadze V, Norberg E, Orrenius S, Zhivotovsky B. Involvement of Ca2+ and ROS in α-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer. 2010;127:1823–32. doi:10.1002/ijc.25204.

    Article  CAS  PubMed  Google Scholar 

  112. Prasad KN, Kumar B, Yan X-D, Hanson AJ, Cole WC. α-tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment: a review. J Am Coll Nutr. 2003;22:108–17. doi:10.1080/07315724.2003.10719283.

    Article  CAS  PubMed  Google Scholar 

  113. Zhu J, Fu F, Xiong Z, Shen M, Shi X. Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells. Colloids Surf B Biointerfaces. 2015;133:36–42. doi:10.1016/j.colsurfb.2015.05.040.

    Article  CAS  PubMed  Google Scholar 

  114. Qin J, Peng Z, Li B, Ye K, Zhang Y, Yuan F, et al. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale. 2015;7:13991–4001. doi:10.1039/C5NR02521D.

    Article  CAS  PubMed  Google Scholar 

  115. Deng H, Zhong Y, Du M, Liu Q, Fan Z, Dai F, et al. Theranostic self-assembly structure of gold nanoparticles for NIR photothermal therapy and X-Ray computed tomography imaging. Theranostics. 2014;4:904–18. doi:10.7150/thno.9448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jang B, Park S, Kang SH, Kim JK, Kim S-K, Kim I-H, et al. Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo. Quant Imaging Med Surg. 2012;2:1–11. doi:10.3978/.issn.2223-4292.2012.01.03.

    PubMed  PubMed Central  Google Scholar 

  117. Jin Y, Wang J, Ke H, Wang S, Dai Z. Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials. 2013;34:4794–802. doi:10.1016/j.biomaterials.2013.03.027.

    Article  CAS  PubMed  Google Scholar 

  118. Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5:946–60. doi:10.7150/thno.11974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, et al. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 2015;38:10–21. doi:10.1016/j.biomaterials.2014.10.065.

    Article  CAS  PubMed  Google Scholar 

  120. Joh DY, Kao GD, Murty S, Stangl M, Sun L, Al Zaki A, et al. Theranostic gold nanoparticles modified for durable systemic circulation effectively and safely enhance the radiation therapy of human sarcoma cells and tumors. Transl Oncol. 2013;6:722–31. doi:10.1593/tlo.13433.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Jølck RI, Binderup T, Hansen AE, Scherman JB, Munch AF, Rosenschold P, Kjaer A, et al. Injectable colloidal gold in a sucrose acetate isobutyrate gelating matrix with potential use in radiation therapy. Adv Healthc Mater. 2014;3:1680–7. doi:10.1002/adhm.201300668.

    Article  PubMed  CAS  Google Scholar 

  122. Al Zaki A, Joh D, Cheng Z, De Barros ALB, Kao G, Dorsey J, et al. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano. 2014;8:104–12. doi:10.1021/nn405701q.

    Article  CAS  PubMed  Google Scholar 

  123. Kao HW, Lin YY, Chen CC, Chi KH, Tien DC, Hsia CC, et al. Evaluation of EGFR-targeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorg Med Chem Lett. 2013;23:3180–5. doi:10.1016/j.bmcl.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  124. Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9796–809. doi:10.1016/j.biomaterials.2011.08.086.

    Article  CAS  PubMed  Google Scholar 

  125. Park J, Park J, Ju EJ, Park SS, Choi J, Lee JH, et al. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J Control Release. 2015;207:77–85. doi:10.1016/j.jconrel.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  126. Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1:13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachela Popovtzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dreifuss, T., Barnoy, E., Motiei, M., Popovtzer, R. (2017). Theranostic Gold Nanoparticles for CT Imaging. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_19

Download citation

Publish with us

Policies and ethics