Skip to main content

Theranostic Nanoplatforms for PET Image-Guided Drug Delivery

  • Chapter
  • First Online:
Design and Applications of Nanoparticles in Biomedical Imaging

Abstract

Positron emission tomography (PET) image-guided techniques have the potential to play an important role in the investigation of the biodistribution and pharmacokinetics of drug delivery systems and monitoring their therapeutic responses for management of a wide variety of cancers. This field of study has advanced rapidly over the last few years, mainly due to the application of nanotechnology and advances in PET imaging instrumentation. Various types of nanoplatforms, which include organic nanoparticles such as liposomes, micelles, endogenous nanostructures, and inorganic nanoparticles such as metals and oxide nanoparticles, have been developed and exploited in biomedical research to deliver PET imaging agents (positron emitting radioisotopes) and chemotherapeutic drugs for cancer theranostics. This chapter focuses on the recent developments in PET-guided drug delivery using these theranostic nanoplatforms and discusses the challenges ahead for potential clinical translation of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine. 2016;12:81–103.

    CAS  PubMed  Google Scholar 

  2. Lytton-Jean AK, Kauffman KJ, Kaczmarek JC, Langer R. Cancer nanotherapeutics in clinical trials. Cancer Treat Res. 2015;166:293–322.

    Article  CAS  PubMed  Google Scholar 

  3. Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.

    Article  CAS  PubMed  Google Scholar 

  4. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–907.

    Article  PubMed  Google Scholar 

  5. World Health Organization Cancer Factsheet. (http://www.who.int/mediacentre/factsheets/fs297/en/). Accessed 20 Sept 2015.

  6. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104–20.

    Article  CAS  PubMed  Google Scholar 

  7. Marchal S, Hor AE, Millard M, Gillon V, Bezdetnaya L. Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs. 2015;75:1601–11.

    Article  CAS  PubMed  Google Scholar 

  8. Terreno E, Uggeri F, Aime S. Image guided therapy: the advent of theranostic agents. J Control Release. 2012;161(2):328–37.

    Article  CAS  PubMed  Google Scholar 

  9. Chow EK, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5(216):216rv4.

    Article  PubMed  Google Scholar 

  10. Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm. 2014;11(11):3777–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakravarty R, Hong H, Cai W. Image-guided drug delivery with single-photon emission computed tomography: a review of literature. Curr Drug Targets. 2015;16(6):592–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44(10):1050–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pancholi K. A review of imaging methods for measuring drug release at nanometre scale: a case for drug delivery systems. Expert Opin Drug Deliv. 2012;9(2):203–18.

    Article  CAS  PubMed  Google Scholar 

  15. Chakravarty R, Chakraborty S, Dash A. Molecular imaging of breast cancer: role of RGD peptides. Mini Rev Med Chem. 2015.

    Google Scholar 

  16. Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108(5):1501–16.

    Article  CAS  PubMed  Google Scholar 

  17. Jennings LE, Long NJ. “Two is better than one”—probes for dual-modality molecular imaging. Chem Commun (Camb). 2009;(24):3511–24

    Google Scholar 

  18. Aboagye EO, Price PM. Use of positron emission tomography in anticancer drug development. Invest New Drugs. 2003;21(2):169–81.

    Article  CAS  PubMed  Google Scholar 

  19. Alauddin MM. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am J Nucl Med Mol Imaging. 2012;2(1):55–76.

    CAS  PubMed  Google Scholar 

  20. Rosch F. Past, present and future of 68Ge/68Ga generators. Appl Radiat Isot. 2013;76:24–30.

    Article  CAS  PubMed  Google Scholar 

  21. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, et al. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater. 2014;26(30):5119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, et al. Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem Int Ed Engl. 2013;52(50):13319–23.

    Article  CAS  PubMed  Google Scholar 

  23. Chen F, Goel S, Valdovinos HF, Luo H, Hernandez R, Barnhart TE, et al. In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano. 2015;9(8):7950–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pagani M, Stone-Elander S, Larsson SA. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med. 1997;24(10):1301–27.

    Article  CAS  PubMed  Google Scholar 

  25. Kornyei J, Mikecz P, Toth G. PET radiopharmaceuticals: novelties and new possibilities. Magy Onkol. 2014;58(4):245–50.

    PubMed  Google Scholar 

  26. Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, et al. Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Adv Mater. 2015;27(34):5063–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lanza GM, Moonen C, Baker Jr JR, Chang E, Cheng Z, Grodzinski P, et al. Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  28. Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, Moeckel D, et al. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett. 2014;14(2):972–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24(8):1405–14.

    Article  PubMed  Google Scholar 

  31. Goyal P, Goyal K, Vijaya Kumar SG, Singh A, Katare OP, Mishra DN. Liposomal drug delivery systems—clinical applications. Acta Pharm. 2005;55(1):1–25.

    CAS  PubMed  Google Scholar 

  32. Medina OP, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des. 2004;10(24):2981–9.

    Article  CAS  PubMed  Google Scholar 

  33. Paoli EE, Kruse DE, Seo JW, Zhang H, Kheirolomoom A, Watson KD, et al. An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: importance of formulation. J Control Release. 2010;143(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  34. Lee H, Zheng J, Gaddy D, Orcutt KD, Leonard S, Geretti E, et al. A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine. 2015;11(1):155–65.

    CAS  PubMed  Google Scholar 

  35. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6(6):714–29.

    CAS  PubMed  Google Scholar 

  36. Gothwal A, Khan I, Gupta U. Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res. 2016;33:18–39.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao Y, Hong H, Javadi A, Engle JW, Xu W, Yang Y, et al. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials. 2012;33(11):3071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo J, Hong H, Chen G, Shi S, Zheng Q, Zhang Y, et al. Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials. 2013;34(33):8323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo J, Hong H, Chen G, Shi S, Nayak TR, Theuer CP, et al. Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. ACS Appl Mater Interfaces. 2014;6(24):21769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huard DJ, Kane KM, Tezcan FA. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat Chem Biol. 2013;9(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  41. Ren G, Miao Z, Liu H, Jiang L, Limpa-Amara N, Mahmood A, et al. Melanin-targeted preclinical PET imaging of melanoma metastasis. J Nucl Med. 2009;50(10):1692–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale. 2014;6(5):2502–30.

    Article  CAS  PubMed  Google Scholar 

  43. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, et al. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics. 2012;2(8):757–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi S, Chen F, Cai W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine. 2013;8(12):2027–39.

    Article  CAS  PubMed  Google Scholar 

  46. El-Hammadi MM, Arias JL. Iron oxide-based multifunctional nanoparticulate systems for biomedical applications: a patent review (2008—present). Expert Opin Ther Pat. 2015;25(6):691–709.

    Article  CAS  PubMed  Google Scholar 

  47. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging. 2015.

    Google Scholar 

  48. US FDA Investigational New Drug approval for first-in-human trial of novel cancer-targeting nanoparticle. News Anal Ther Deliv. 2011;2(3):287.

    Google Scholar 

  49. Chen F, Hong H, Zhang Y, Valdovinos HF, Shi S, Kwon GS, et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013;7(10):9027–39.

    Article  CAS  PubMed  Google Scholar 

  50. Goel S, Chen F, Hong H, Valdovinos HF, Hernandez R, Shi S, et al. VEGF121-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces. 2014;6(23):21677–85.

    Google Scholar 

  51. Chen F, Hong H, Shi S, Goel S, Valdovinos HF, Hernandez R, et al. Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci Rep. 2014;4:5080.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chakravarty R, Goel S, Hong H, Chen F, Valdovinos HF, Hernandez R, et al. Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine. 2015;10(8):1233–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32(17):4151–60.

    Google Scholar 

  54. Lammers T, Rizzo LY, Storm G, Kiessling F. Personalized nanomedicine. Clin Cancer Res. 2012;18(18):4889–94.

    Article  CAS  PubMed  Google Scholar 

  55. Theek B, Rizzo LY, Ehling J, Kiessling F, Lammers T. The theranostic path to personalized nanomedicine. Clin Transl Imaging. 2014;2(1):66–76.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Regulations for in vivo radiopharmaceuticals used for diagnosis and monitoring. Food and Drug Administration, HHS. Final rule. Fed Regist. 1999;64(94):26657–70.

    Google Scholar 

  57. Harolds J. What is now current good manufacturing practice for PET drugs? Clin Nucl Med. 2010;35(5):329.

    Article  PubMed  Google Scholar 

  58. Hung JC. USP general chapter <797> pharmaceutical compounding-sterile preparations. J Nucl Med. 2004;45(6):20N. 8N.

    PubMed  Google Scholar 

  59. Hung JC. The potential impact of usp general chapter <797> on procedures and requirements for the preparation of sterile radiopharmaceuticals. J Nucl Med. 2004;45(6):21N–6.

    PubMed  Google Scholar 

  60. Boschi S, Malizia C, Lodi F. Overview and perspectives on automation strategies in 68Ga radiopharmaceutical preparations. Recent Results Cancer Res. 2013;194:17–31.

    Article  CAS  PubMed  Google Scholar 

  61. Chi YT, Chu PC, Chao HY, Shieh WC, Chen CC. Design of CGMP production of 18F- and 68Ga-radiopharmaceuticals. Biomed Res Int. 2014;2014:680195.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported, in part, by the University of Wisconsin—Madison, the Bhabha Atomic Research Centre (XII-N-R&D-004.01), the National Institutes of Health (NIBIB/NCI 1R01CA169365, P30CA014520, and 5T32GM08349), the Department of Defense (W81XWH-11-1-0644), the American Cancer Society (125246-RSG-13-099-01-CCE), and the National Science Foundation (DGE-1256259).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rubel Chakravarty Ph.D. or Weibo Cai Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chakravarty, R., Chen, F., Dash, A., Cai, W. (2017). Theranostic Nanoplatforms for PET Image-Guided Drug Delivery. In: Bulte, J., Modo, M. (eds) Design and Applications of Nanoparticles in Biomedical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42169-8_12

Download citation

Publish with us

Policies and ethics