Skip to main content

Biological Processes. Effects of Hydrobionts on Surface Water Quality

  • Chapter
  • First Online:
Processes Determining Surface Water Chemistry

Abstract

Role of biological processes in forming of surface water chemical composition in particular influence of hydrobionts on pH value of water environment, concentration of dissolved oxygen and redox potential, nutrients concentrations and dynamics is discussed. Major attention is paid to the role of hydrobionts in forming of nutrients composition in surface water objects. It is shown that water plants are one of the most important sources of hydrocarbons, protein compounds, aminoacids and compounds of phenol origin as well as different classes and groups of organic substances inflow into the water. Results of studies of hydrobionts impact on metals migration in surface water, transformation of their co-existing forms and characteristics of their distribution among biotic and abiotic components of water ecosystems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimov AF (1981) Funktsionalnaya ekologiya presnovodnykh dvustvorchatykh mollyuskov (Functional ecology of fresh water clams). Nauka, Leningrad

    Google Scholar 

  2. Altunin VS, Belavtseva TM (1993) Kontrol kachestva vody (Handbook). Kolos, Moscow

    Google Scholar 

  3. Antello JM, Arce F, Penedo FJ (1998) Effect of seasonal changes on the complexing of Cu(II) by dissolved organic matter in river water. Water Res 32(9):2714–2720

    Article  Google Scholar 

  4. Antello JM, Arce F, Penedo FJ (2000) Effect of pH on the complexation parameters for organic matter dissolved in river water. Chem Speciat Bioavailab 12(1):9–15

    Article  Google Scholar 

  5. Apte S, Rowland R, Patney H (2000) Size distribution of copper complexing ligands in tropical freshwaters. Chem Speciat Bioavailab 12(3):79–88

    Article  CAS  Google Scholar 

  6. Arendarchuk VV (1978) Indolsoderzhaschie veschestva i rost sinezelyonykh vodorosley, vyzyvayuschikh “tsvetenie” vody (Indole-containing substances and the growth of blue-green algae generating water “bloom”. Dissertation, Taras Shevchenko National University of Kiev

    Google Scholar 

  7. Batoyan VV (1991) Mikroelementy v fitoplanktone Kuybyshevskogo vodokhranilischa (Microelements in phytoplankton of the Kuybyishev reservoir). Ecology 1:80–83

    Google Scholar 

  8. Berger P, Evald M, Liu D, Weber JH (1984) Application of the fluorescence quenching titration method to the complexation of copper (II) in Gironde estuary (France). Mar Chem 14(3):289–295

    Article  CAS  Google Scholar 

  9. Blutstein H, Shaw RF (1981) Characterization of copper binding capacity in lake water. Environ Sci Technol 15(9):1100–1102

    Article  CAS  Google Scholar 

  10. Braginsky LP (1968) Pyatna tsveteniya, nagonnye massy, vybrosy sinezelyonykh vodorosley i proiskhodyaschie v nikh biologicheskie protsessy (Bloom fields, piled-up water, blue-green algae emissions and the biological processes occurring there). Water bloom. Nauk dumka, Kyiv, pp 122–130

    Google Scholar 

  11. Brewer WC, Abernathy AR, Paunter MJ (1977) Oxygen consumption by freshwater sediments. Water Res 11(5):471–473

    Article  CAS  Google Scholar 

  12. Brown DA, Parsons TR (1978) Relationship between cytoplasmic distribution of mercury and toxic effects to zooplankton and chum salmon (Oncorhynchus keta) exposed to mercury in a controlled ecosystem. J Fish Res Board Can 35(6):880–884

    Article  CAS  Google Scholar 

  13. Buykx SEJ, Cleven RFMJ, Hoegee-Wehmann AA, van den Hoop MAGT (1999) Trace metal speciation in European River waters. Fres J Anal Chem 363:599–602

    Article  CAS  Google Scholar 

  14. Campbell PGC, Bisson M, Gagne R, Tessier A (1977) Critical evaluation of the copper (II) solubilization method for the determination of the complexation capacity of natural waters. Anal Chem 49(14):2358–2362

    Article  CAS  Google Scholar 

  15. Carmichael WW (1994) The toxins of cyanobacteria. Sci Amer 270(1):78–86

    CAS  Google Scholar 

  16. Carmichael WW, Azevedo MFO et al (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109(7):663–668

    Article  CAS  Google Scholar 

  17. Chau YK (1973) Complexing capacity of natural water—its significance and measurement. J Chromat Sci 11(11):579

    Article  Google Scholar 

  18. Chau YK, Gachter R, Lum Shue-Chan K (1974) Determination of apparent complexing capacity of lake waters. J Fish Res 31:1515–1519

    Article  CAS  Google Scholar 

  19. Denisova AI, Nahshina EP, Novikov BI, Ryabov AK (1987) Donnye otlozheniya vodokhranilisch i ikh vliyanie na kachestvo vody (Reservoir bottom sediments and their influence on water quality). Nauk dumka, Kyiv

    Google Scholar 

  20. Denisova AI, Timchenko VM, Nahshina EP et al (1989) Gidrologiya i gidrokhimiya Dnepra i ego vodokhranilisch (Hydrology and hydrochemistry of the Dnieper and its reservoirs). Nauk dumka, Kyiv

    Google Scholar 

  21. Denisova OI, Maistrenko YuG (1962) Gidrokhimiya Kakhovskogo vodoymyscha (Hydrochemistry of Kakhovka reservoir). Pub of AN URSR, Kyiv

    Google Scholar 

  22. Drabkova VG (1973) Destruktsiya organicheskogo veschestva i chislennost baktery v donnykh otlozheniyakh ozyor Kolskogo poluostrova (Organic substance destruction and bacterial count in the bottom sediments of Kola Peninsula lakes. Hydrochemical activity of microorganisms in ponds and mineral deposits). Nauka, Moscow, pssp 205–215

    Google Scholar 

  23. Edigarova IA, Krasyukov VN, Lapin IA, Nikanorov AM (1989) Kompleksoobrazuyuschaya sposobnost rastvorennogo organicheskogo veschestva prirodnykh vod (Complexing ability of dissolved organic substance in natural water). Water Resour 4:122–129

    Google Scholar 

  24. Fish W, Morel FMM (1983) Characterization of organic copper-complexing agents released by Daphnia magna. Can J Fish Aquat Sci 40(8):1270–1277

    Article  CAS  Google Scholar 

  25. Flerov BA (1973) Eksperimentalnoe issledovanie fenolnogo otravleniya u ryb (Experimental investigation of phenolic poisoning of fish. Effect of phenol on hydrobyontov. Nauka, Moscow, pp 5–58

    Google Scholar 

  26. Förstner U, Wittmann GTV (1983) Metal pollution in the aquatic environment, 2nd edn. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  27. Gardner M, Comber S (2003) Copper complexation capacity in waters and effluents—limitations of using DOC or colour as general predictors. Chem Speciat Bioavailab 15(1):1–5

    Article  CAS  Google Scholar 

  28. Gardner M, Dixon E, Comber S (2000) Copper complexation in English Rivers. Chem Spec Bioavail 12(1):1–8

    Article  CAS  Google Scholar 

  29. Giesy JP, Briese LA, Leversee GL (1978) Metal binding capacity of selected marine surface waters. Environ Geol 2:257–268

    Article  CAS  Google Scholar 

  30. Gnassia-Barrelli M, Romeo M, Laumond F, Pesando D (1978) Experimental studies of the relationship between natural copper complexes and their toxicity to phytoplankton. Mar Biol 47(1):15–19

    Article  Google Scholar 

  31. Gordeev VV (1983) Rechnoy stok v okean i cherty ego geokhimii (The river runoff into the ocean and the properties of its geochemistry). Nauka, Moscow

    Google Scholar 

  32. Goryunova SV, Demina NS (1974) Vodorosli - produtsenty toksicheskikh veschestv (Algae–producers of toxic substances). Nauka, Moscow

    Google Scholar 

  33. Gundersen K, Mountain CW (1973) Oxygen utilization and pH change in the ocean resulting from biological nitrate formation. Deep-Sea Res 20(12):1083–1091

    CAS  Google Scholar 

  34. Guseynova VP, Sakevich AI (2007) Uglevodorody kletochnykh obolochek presnovodnykh vodorosley i nekotorye aspekty ikh ekologicheskogo metabolizma (Hydrocarbons of cell membrane of fresh-water algae and some aspects of their ecological metabolism). Hydrobiol J 43(4):62–75

    Google Scholar 

  35. Guy RD, Chakrabarti CL (1976) Studies of metal-organic interactions in model systems pertaining to natural waters. Can J Chem 54(16):2600–2611

    Article  CAS  Google Scholar 

  36. Hanck KW, Dillard JW (1977) Evaluation of micromolecular complexometric titrations for the determination of the complexing capacity of natural waters. Anal Chim Acta 89:329–338

    Article  CAS  Google Scholar 

  37. Hart BT (1981) Trace metal complexing capacity of natural water: A review. Environ Technol Lett 2:95–110

    Google Scholar 

  38. Hart BT, Davies SHR (1981) Copper complexing capacity of waters in the Magela Creek system, Northern Australia. Environ Technol Lett 2:205–214

    Article  CAS  Google Scholar 

  39. Hassett JM, Jennett JC, Smith JE (1980) Heavy metal accumulation by algae. In: Baker RA (ed) Contaminants and sediments, vol 2. Ann Arbor Science Publisher, pp 409–424

    Google Scholar 

  40. Hawke DJ, Powell KJ, Gregor JE (1996) Determination of the aluminium complexing capacity of fulvic acids and natural waters, with examples from five New Zealand rivers. Mar Freshw Res 47(1):11–17

    Article  CAS  Google Scholar 

  41. Haylov KM (1968) Mikrobiologicheskie protsessy vnekletochnogo gidroliza polisakharidov, rastvoryonnykh v morskoy vode (Microbiological processes of extracellular hydrolysis of polyose dissolved in marine water). Microbiology 37(3):518–522

    Google Scholar 

  42. Haylov KM (1971) Ekologichesky metabolism v more (Ecological metabolism in the sea). Nauk dumka, Kyiv

    Google Scholar 

  43. Haylov KM (1974) Biokhemicheskaya trofodinamika v morskikh pribrezhnykh ekosistemakh (Biochemical trophic dynamics in marine coastal ecosystems). Nauk dumka, Kyiv

    Google Scholar 

  44. Hoffman MR, Yost EC, Eisenreich SJ, Maier WJ (1981) Characterization of soluble and colloidal-phase metal complexes in river water by ultrafiltration. A massbalance approach. Environ Sci Technol 15(16):655–661

    Article  Google Scholar 

  45. Huang S, Wang Z, Ma M (2002) Measuring the bioavailable/toxic concentration of copper in natural water by using anodic stripping voltammetry and Vibrio-qinghaiensis sp. Nov.-Q67 bioassay. Chem Speciat Bioavailab 15(2):37–45

    Article  Google Scholar 

  46. Itabashi H, Kawamoto H, Niibe N, Tsunoda K, Akaiwa H (1995) Simultaneous determination of complexing capacity and lability of soluble copper(II) complex in natural water by dithizone extraction. Anal Sci 11:263–265

    Article  CAS  Google Scholar 

  47. Izrael YuA, Nikanorov AM, Lapin IA et al (1985) Otsenka bufernoy yomkosti malykh vodotokov k tyazhyolym metallam (Assessment of beck surge capacity to heavy metals). AN USSR’s reports, vol 283, no 3, pp 703–706

    Google Scholar 

  48. Izrael YuA, Nikanorov AM, Lapin IA, Zhulidov AV, Dubova NA (1985) Otsenka bufernoy yomkosti malykh vodotokov k tyazhyolym metallam (The assessment of surge capacity of minor streams to heavy metals). USSR’s Acad Sci Rep 283(3):703–706

    CAS  Google Scholar 

  49. Jackson TA (1978) A biogeochemical study of heavy metals in lakes and streams, and a proposed method for limiting heavy metal pollution of natural waters. Verh Int Ver Theor und Angew Limnol 20(3):1945–1946

    Google Scholar 

  50. Jacoby JM, Collier DC, Welch EB, Harody FJ, Crayton M (2000) Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Can J Fish Aquat Sci 51(1):P.231–240

    Google Scholar 

  51. Kaplin VT (1967) Prevraschenie organicheskikh soedineny v vodoyome (Conversion of organic compounds in pond). Hydrochem Mater 45:207–226

    CAS  Google Scholar 

  52. Keller MD, Mague TN, Badenhausen M, Glover H (1982) Seasonal variation in the production and consumption of aminoacids by coastal microplankton. Estuar Coast Shelf Sci 15(3):301–315

    Article  CAS  Google Scholar 

  53. Kirilova VS (1969) Izuchenie lipidnogo kompleksa nekotorykh predstaviteley azotfiksiruyuschikh sinezelyonykh vodorosley i khlorelly (Study of lipid complex of some forms of nitrogen-fixing blue-green algae and chlorella). Dissertation, Zabolotny Institute of microbiology and virology

    Google Scholar 

  54. Klein G (1975) Bildung von Tryptophanmetaboliten beim anaeroben obau von Algen und deren Bedeutung fur Gewasser und Wasserwirtschaft. Vortrag auf Fachtagung der Deutschen Section fur Limnologie in der internationalen fur Limnologie, Siegburg, 6–10 Oct 1975

    Google Scholar 

  55. Klochenko PD (1994) Aminy – ekzo-i- endometabolity vodorosley (Amines –exo-endometabolites of algae). Hydrobiol J 30(5):42–62

    Google Scholar 

  56. Konovalov YuD (1993) Svyazyvanie kadmiya i rtuti belkami i nizkomolekulyarnymi tiolovymi soedineniyami ryb (obzor) (Cadmium and mercury binding by proteins and fish low molecular weight thiol compouds). Hydrobiol J 29(1):42–51

    CAS  Google Scholar 

  57. Konovalov YuD (1995) Anionnaya i kationnaya formy belkov v vodakh Desny i Dnepra na uchastke nizhnego byefa Kievskogo vodokhranilischa (Anionic and cationic protein forms in the Desna and Dnieper water on the site of the downstream pool of Kiev reservoir). Hydrobiol J 31(2):82–95

    CAS  Google Scholar 

  58. Korableva AI (1977) Sostav i kachestvo aminokislot v organicheskom veschestve, rastvoryonnom v vode Dneprodzerzhinskogo i Zaporozhskogo vodokhranilisch (Composition and quality of amino acids in organic substance dissolved in the water of Dnepropetrovsk and Zaporozhye reservoirs. Biological aspects of safety and environmental management). Pub NII of Biology, Dnepropetrovsk, pp 102–107

    Google Scholar 

  59. Korableva AI (1978) Raspredelenie i ekologo-funktsionalnaya kharakteristika azotistykh komponentov rastvorennogo organicheskogo veschestva v vode Dneprodzerzhinskogo i Zaporozhskogo vodokhranilisch (Distribution and ecologo-functional characteristic of nitrogenous components of dissolved organic substance in Dneprodzerzhinsk and Zaporozhye reservoirs). Dnepropetrovsk

    Google Scholar 

  60. Kozitskaya VN (1971) K voprosu ob istochnikakh nakopleniya fenolov v vodokhranilischakh dneprovskogo kascada (On sources of phenol accumulation in the Dnieper cascade reservoirs). Hydrobiol J 7(4):57–62

    CAS  Google Scholar 

  61. Kozitskaya VN (1975) Fenolnye soedineniya v “pyatnakh tsveteniya” vodorosley (Phenol compounds in “bloom fields” of algae). Biological self-purification and water quality formation. Nauka, Moscow, pp 81–84

    Google Scholar 

  62. Kozitskaya VN (1979) Vozdeistvie ekzogennykh fenolnykh soedineny na rost Microcytis aeruginosa (Influence of exogenic phenol compounds on the growth of Microcystis aeruginosa). Hydrobiol J 15(3):50–54

    CAS  Google Scholar 

  63. Kozitskaya VN (1984) Ingibiruyuschie veschestva, produtsiruemye nekotorymy Cyanophyta (Inhibitory substances produced by some Cyanophyta). Hydrobiol J 20(2):51–55

    Google Scholar 

  64. Kulsky LA, Sirenko LA, Shkvaro ZN (1986) Fitoplankton i voda (Phytoplankton and water). Nauk dumka, Kyiv

    Google Scholar 

  65. Kunkel R, Manahan SE (1973) Atomic absorption analysis of strong heavy metal chelating agents in water and waste water. Anal Chem 45:1465–1468

    Article  CAS  Google Scholar 

  66. Landau Yu, Sirenko L (eds) (2004) Gidroenergetika i okruzhayuschaya sreda (Hydroenergetics and environment). Libra, Kiev

    Google Scholar 

  67. Lapin IA (1988) Kompleksoobrazuyuschaya sposobnost prirodnykh vod v sisteme opredeleniya bufernoy yomkosty vodnykh ekosistem k tyazhyolym metallam (Complexing capacity of natural water in the system of surge capacity determination of aquatic ecosystems to heavy metals. Ecological regulation and modeling anthropogenic impact on aquatic ecosystems, vol 1. Hydrometeoizdat, Leningrad, pp 83–95

    Google Scholar 

  68. Les A, Walker RW (1984) Toxicity and binding of copper, zinc, and cadmium by the blue-green algae, Chroococcus paris. Water Air Soil Pollut 23(2):129–139

    Article  CAS  Google Scholar 

  69. Linnik PN (2004) Formirovanie gidrokhemicheskogo rezhima vodokhranilisch. (Formation of a reservoir hydrochemical regime). In: Landau Yu, Sirenko L (eds) Hydroenergetics and environment Libra, Kiev, pp 219–236

    Google Scholar 

  70. Linnik PN, Nabivanets BI (1986) Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Metal migration forms in fresh surface water). Hydrometeoizdat, Leningrad

    Google Scholar 

  71. Linnik PN, Nabivanets Yu, Iskra IV et al (1994) Kopleksoobrazuyuschaya sposobnost rastvoryonnykh veschestv prirodnykh vod kak sostavnaya chast “bufernoy yomkosty” vodnykh ekosistem (Complexing capacity of natural water dissolved organic substances as a percent of “surge capacity” of water ecosystems). Hydrobiol J 30(5):87–99

    Google Scholar 

  72. Linnik PN, Scherban EP (1999) Otsenka toksichnosti form medi v prirodnykh vodakh metodom biotestirovaniya v sochetanii s khemilyuminestsentnym opredeleniem kontsentratsii svbodnykh ionov Cu +2 (Assessment of copper form toxicity in natural water with the help of a biotesting method combined with chemiluminescence detection of free ion concentration Cu 2+. Ecolog Chem 8(3):168–176

    CAS  Google Scholar 

  73. Linnik PN, Timchenko OV, Zubko AV et al (2008) Kislorodny rezhim vodoyomov kak vazhneyshy factor migratsii razlichnykh form metallov v sisteme “donnye otlozheniya-voda (Reservoir oxigen regime as the most important factor for migration of different metal forms in the “bottom sediments-water” system)”. Hydrobiol J 44(6):94–116

    Article  CAS  Google Scholar 

  74. Linnik PN, Vasilchuk TA (2001) Rol gumusovykh veschestv v protsessakh kompleksoobrazovaniya i detoksikatsii (na primere vodokhranilisch Dnepra) (The role of humic substances in the processes of binding and detoxification (for the Dniper reservoirs)). Hydrobiol J 37(5):98–112

    Google Scholar 

  75. Linnik PN, Vasilchuk TA (2005) Role of humic substances in the complexation and detoxification of heavy metals: case study of the Dnieper reservoirs. Use of humic substances to remediate polluted environments: from theory to practice. In: Perminova IV, Hatfield K, Hertkorn N, (eds). NATO Science Series. IV: earth and environmental series, pp 135–154. Printed in the Netherlands, Springer, vol 52

    Google Scholar 

  76. Linnik PN, Vasilchuk TA, Linnik RP Ignatenko II (2007) Sosuschestvuyuschie formy tyazhyolykh metallov v poverkhnostnykh vodakh Ukrainy i rol organicheskikh veschestv v ikh migratsii (Coexistent heavy metal forms in surface water of Ukraine and the role of organic substances in their migration. Methods and objects of chemical analysis, vol 2, no 2, pp 130–145

    Google Scholar 

  77. Linnik PN, Vasilchuk TA, Linnik RP (2004) Gumusovye veschestva prirodnykh vod i ikh znachenie dlya vodnykh ekosistem (obzor) (Humic substances of natural water and their importance for water ecosystems (an overwiew)). Hydrobiol J 40(1):81–107

    CAS  Google Scholar 

  78. Maksimova IV, Pimenova MV (1971) Vnekletochnye produkty zelyonykh vodorosley (Extracellular products of blue-green algae. Bioactive biogeneous compounds. MGU Press, Moscow, pp 51–58

    Google Scholar 

  79. Manskaya SM, Drozdova TV (1964) Geokhimiya organicheskogo veschestva (Geochemistry of organic substance). Nauka, Moscow

    Google Scholar 

  80. McKnight DM, Morel FMM (1979) Release of weak and strong copper-complexing agents by algae. Limnol Oceanogr 24(5):823–827

    Article  CAS  Google Scholar 

  81. McKnight DM, Morel FMM (1980) Copper complexation by siderophores from filamentous blue-green algae. Limnol Oceanogr 25(1):62–71

    Article  CAS  Google Scholar 

  82. Mihaylenko LE (1999) Bakterioplankton dneprovskikh vodokhranilisch (Bacterial plankton of the Dnieper reservoirs). Kiev

    Google Scholar 

  83. Moiseenko TI, Kudryavtseva LP, Gashkina NA (2006) Rasseyannye elementy v poverkhnostnykh vodakh sushi: Tekhnofilnost, bioakkumulyatsiya i ekotoksilologiya (Trace elements in surface water: Technophility, bioaccumulation and environmental toxicology). Nauka, Moscow

    Google Scholar 

  84. Molodkin PF (ed) (1991) Biogeokhimichesky tskil tyazhyolykh metallov v ekosisteme Nizhnego Dona (Biogeochemical cycle of heavy metals in the Lower Don ecosystem). Rostov unity Press, Rostov-on-Don

    Google Scholar 

  85. Morel F (1985) Iron uptake and phytoplankton growth. Rev Port Quim 27:1–2. In: 2nd international conference on bioinorganic chemistry abstract, Algarve, pp 140–141

    Google Scholar 

  86. Mur JV, Ramamurti S (1987) Tyazhyolye metally v prirodnykh vodakh: Kontrol i otsenka vliyaniya (Heavy metals in natural water: Control and assessment of influence). Mir, Moscow

    Google Scholar 

  87. Murphy TP, Lean DRS (1975) The distribution of iron in a closed ecosystem. Verh Int Verein Limnol 19(1):258–266

    Google Scholar 

  88. Nemtseva LI, Semenov AD, DatskoVG (1964) Metod kolichestvennogo opredeleniya letichikh aminov v prirodnykh i zagryaznyonnykh vodakh (Quantification method of volatile amine detection in natural and foul water). Hydrochem Mater 38:150–155

    Google Scholar 

  89. Nikanorov AM, Zhulidov AV (1991) Biomonitoring metallov v presnovodnykh ekosistemakh (Biomonitoring metals in fresh water ecosystems). Hydrometeoizdat, Leningrad

    Google Scholar 

  90. Nikanorov AM, Zhulidov AV, Dubova NA et al (1988) Bufernaya yomkost presnovodnykh ekosistem k tyazhyolym metallam i gidrobiologicheskie faktory eyo opredelyayuschie (Fresh water surge capacity to heavy metals and hydrobiological factors determining it. Ecological regulation and modeling anthropogenic influence on water ecosystems, Issue 1. Hydrometeoizdat, Leningrad, pp 58–69

    Google Scholar 

  91. Nikanorov AM, Zhulidov AV, Lapin IA et al (1989) Kineticheskie kharakteristiki protsessov akkumulyatsii metallov bioticheskimi i abioticheskimi komponentami presnovodnykh ekosistem (Kinetic processes of metal accumulation by biotic and abiotic components of fresh-water ecosystems). USSR’s Acad Sci Rep 305(5):1274–1276

    CAS  Google Scholar 

  92. Nikanorov AM, Zhulidov AV, Pokarzhevsky AD (1985) Biomonitoring tyazhyolykh metallov v presnovodnykh ekosistemakh (Biomonitoring heavy metals in fresh water ecosystems). Hydrometeoizdat, Leningrad

    Google Scholar 

  93. Nikolishin IY (1978) Vozmozhnosti ispolzovaniya rasteny v kachestve indikatorov nakopleniya i deystviya tyazhyolykh metallov v ekologicheskom monitoringe (Plant application abilities as an indicator of heavy metal accumulation and activity in ecological monitoring. Problems of ecological monitoring and ecosystem modeling, vol 1. Leningrad, pp 42–56

    Google Scholar 

  94. Osipov LF (1980) Metabolity sinezelyonykh vodorosley i ikh rol v formirovanii rastvorimogo organicheskogo veschestva vody (Blue-green algae metabolites and their role in formation of dissolved organic water substance). Dissertation, Institute of Hydrobiology of Ukranian Academy of Sciences

    Google Scholar 

  95. Ostapenya AP (1979) Detrit iego rol v vodnykh ecosystemakh (Detritus and its role in water ecosystems). Research framework of water ecosystems. Leningrad, pp 257–271

    Google Scholar 

  96. Pavelyeva EB (1974) Vertikalnoe raspredelenie, sezonnaya dinamika sestona i rol detrita v ekosisteme oz. Dalnego (Altitude distribution, seasonal dynamics of seston and the role of detritus in ecosystem of lake Dalnoe). Hydrobiol J 10(3):20–24

    Google Scholar 

  97. Perminova IV, Hatfield K (2005) Remediation chemistry of humic substances: theory and implications for technology. Use of humic substances to remediate polluted environments: from theory to practice. In: Perminova IV, Hatfield K, Hertkorn N (eds) NATO Science Series. IV: Earth and environmental series, vol 52. Printed in the Netherlands, Springer, pp 3–36

    Google Scholar 

  98. Priymachenko AD (1981) Fitoplankton i pervichnaya produktsiya Dnepra i dneprovskikh vodokhranilisch (Phytoplankton and primary product of the Dnieper and its reservoirs). Nauk. dumka, Kyiv

    Google Scholar 

  99. Ramamoorthy S, Kushner DJ (1975) Heavy metal binding components of river water. J Fish Res Board Can 32(10):1755–1766

    Article  CAS  Google Scholar 

  100. Rolle I, Hobucher HE, Kneifel H et al (1977) Amines in unicellular green algae. 2. Amines in Scenedesmus acutus. Anal Biochem 77:103–109

    Article  CAS  Google Scholar 

  101. Rozan TF, Benoit G (1999) Geochemical factors controlling free Cu ion concentrations in river waner. Geochim Cosmochim Acta 63 (19/20): P.3311–3319

    Google Scholar 

  102. Rudd T, Sterritt RM, Lester JN (1984) Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers. Water Res 18(3):379–384

    Article  CAS  Google Scholar 

  103. Ryabov AK, Sirenko LA (1982) Isskusstvennaya aeratsiya prirodnykh vod (Artificial aeration of natural water). Nauk dumka, Kyiv

    Google Scholar 

  104. Ryan DK, Weber JH (1982) Copper (II) Complexing capacities of natural waters by fluorescence quenching. Environ Sci Technol 16(12):866–872

    Article  CAS  Google Scholar 

  105. Sabyilina AV (1978) O sezonnoy dinamike i nekotorykh zakonomernostyakh vertikalnogo raspredeleniya otdelnykh fraktsy lipidov vo vzvesi, vydelennoy iz prirodnykh vod (On seasonal dynamics and some regularities of altitude distribution of lipid fractions in the suspension extruded from natural water. Organic substance and biogenic elements in inland water. Theses, Tallinn, 3–4 Oct 1978. Pub. AN ESSR, Tallinn, pp 94–95

    Google Scholar 

  106. Saekevich AI (1985) Ekzometabolity presnovodnykh vodorosley (Fresh water algae exometabolites). Nauk, Dumka, Kyiv

    Google Scholar 

  107. Saekevich OY, Usenko OM (2008) Alelopatiya v gidroekosistemakh (Alelopatiya in aquatic ecosystems). NAN of Ukraine, Inst of Hydrobiology, Kiev

    Google Scholar 

  108. Scherbak VI (1998) Mnogoletnyaya dinamika “tsveteniya” vody dneprovskykh vodokhranilisch (Over-year dynamics of the Dnieper reservoir water “bloom”). NAN of Ukraine’s reports, vol 7, pp 187–189

    Google Scholar 

  109. Seki H (1986) Organicheskie veschestva v vodnykh ekosistemakh (Organic substances in aquatic ecosystems). Hydrometeoizdat, Leningrad

    Google Scholar 

  110. Semenov AD (1966) O soderzhanii otdelnykh grup organicheskikh veschestv v vodakh nekotorykh rek Sovetskogo Soyuza (On certain group content of organic substances in some rivers of the USSR). Hydrochem Mater 42P:171–177

    Google Scholar 

  111. Semenov AD (1967) Khimicheskaya priroda organicheskikh veschestv poverkhnostnykh vod (Chemical nature of organic substances of surface water). Hydrochem Mater 45:155–172

    CAS  Google Scholar 

  112. Semenov AD (1971) Organicheskie veschestva v poverkhnostnykh vodakh Sovetskogo Soyuza (Organic substances in surface water of the Soviet Union). Dissertation, Hydrochemical institute

    Google Scholar 

  113. Semenov AD (ed) (1977) Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi (Manual for surface water chemical analysis). Hydrometeoizdat, Leningrad

    Google Scholar 

  114. Semenov AD, Bryizgalo VA, Pozdnyakova AN (1974) O svyazi mezhdu dinamikoy biomassy, sostavom fitoplanktona i vnutrigodovymi izmeneniyami soderzhaniya rastvorennykh organicheskikh veschestv v vodoyome (On relationship among biomass dynamics, phytoplankton content and intrannual changes of dissolved organic substance content in the pond). Hydrochem Mater 60:155–160

    CAS  Google Scholar 

  115. Shnyukova EI (1977) Produkuvannya pozaklitynnykh vuglevodiv deyakymy sinezelenymy vodorastyami (Extracellular carbohydrate production by some blue-green algae). Ukr botan J 34(3):225–229

    CAS  Google Scholar 

  116. Shnyukova EI, Pirozhenko SU (1972) Kharakteristika polisakharidnogo kompleksa fitoplanktona v period “tsveteniya” vodoyoma (Polyose complex characteristics of phytoplankton during pond “bloom”. Hydrobiol J 8(5):36–41

    Google Scholar 

  117. Shuman MS, Woodward GPJr (1977) Stability constants of copper-organic chelates in aquatic samples. Environ Sci Technol 11(8):809–813

    Google Scholar 

  118. Sirenko LA (1972) Fiziologicheskie osnovy razmnozhenia sinezelyonykh vodorosley v vodokhranilischakh (Physiological fundamentals of blue-green algae reproduction in reservoirs). Nauk dumka, Kyiv

    Google Scholar 

  119. Sirenko LA, Gavrilenko MYa (1976) “Tsvetenie” vody i evtrofirovanie (metody ego ogranicheniya i ispolzovanie sestona) (Water “bloom” and eutrophication (the methods of its restriction and seston usage)). Nauk. dumka, Kyiv

    Google Scholar 

  120. Sirenko LA, Kozitskaya VN (1988) Biologicheski aktivnye veschestva vodorosley i kachestvo vody (Biologically active substances of algae and water quality). Nauk dumka, Kyiv

    Google Scholar 

  121. Sirenko LA, Sakevich AI, Arendarchuk VV et al (1971) Vydeleniya vodorosley i ikh rol v formirovanii vodnykh biotsenozov (Algae detection and their role in aquatic biocenosis formation. Transient biologically active compounds of biogenious nature). MGU Press, Moscow, pp 74–83

    Google Scholar 

  122. Sudina EG, Shnyukova EI, Kostlan NB, Mushak PA, Tupik ND (1978) Biokhimiya sinezelyonykh vodorosley (Biochemistry of blue-green algae). Nauk dumka, Kyiv

    Google Scholar 

  123. Sueur S, van den Berg CMG, Riley JP (1982) Measurement of the metal complexing ability of exudates of marine macroalgae. Limnol Oceanogr 27(3):536–546

    Article  CAS  Google Scholar 

  124. Telitchenko MM (1974) Gipoteticheskie algotoksiny i perekisnoe okislenie rastvoryonnykh organicheskykh veschestv (Hypothetical algotoxins and dissolved organic substance perooxidating). Hydrobiolog J 10(6):97–107

    Google Scholar 

  125. Telitchenko MM, Ostroumov SA (1990) Vvedenie v problemy biokhemicheskoy ekologii (Problems of biochemical ecology in brief). Nauka, Moscow

    Google Scholar 

  126. Town RM, Filella M (2000) A comprehensive systematic compilation of complexation parameters reported for trace metals in natural waters. Aquatic Sci 62:252–295

    Article  Google Scholar 

  127. Truitt RE, Weber JH (1981) Determination of complexing capacity of fulvic acid for copper (II) and cadmium (II) by dialysis titration. Anal Chem 53(2):337–342

    Article  CAS  Google Scholar 

  128. Usov AI, Chizhov OS (1988) Khimicheskie issledovaniya vodorosley (Chemical study of algae). Znanie, Moscow

    Google Scholar 

  129. Van den Berg CMG, Kramer JR Determination of complexing capacities of ligands in natural waters and conditional stability constants of the copper complexes by means of manganese dioxide. Anal Chim Acta 106(1):113–120

    Google Scholar 

  130. Van den Berg CMG, Wong PTS, Chau YK (1979) Measurement of complexing materials excreted from algae and their ability to ameliorate copper toxicity. J Fish Res Board Can 36(8):901–905

    Article  Google Scholar 

  131. Van Veen E, Gardner M, Comber S (2001) Temporal variation of copper and zinc complexation capacity in the Humber estuary. J Environ Monit 3:322–323

    Article  Google Scholar 

  132. Varshal GM, Velyuhanova TK, Koscheeva IYa, Kubrakova IV, Baranova NN (1988) Kompleksoobrazovanie blagorodnykh metallov s fulvokislotami prirodnykh vod i geokhemicheskaya rol etikh protsessov (Complexation of precious metals with natural water fulvic acids and the geochemical role of these processes). In Ermakov AN (ed) Analytical chemistry of rare elements: Collection of studies. Nauka, Moscow, pp 112–146

    Google Scholar 

  133. Vasyukov AE, Blank AB (2007) Khimicheskie aspekty ekologicheskoy bezoopasnosti poverkhnostnykh vodnykh obyektov (Chemical aspects of surface-waterbody ecological safety). Institute of Monocrystals, Kharkov

    Google Scholar 

  134. Vinborg GG (ed) (1980) Bentos Uchinskogo vodokhranilischa (Benthos of the Uchinsk reservoir). Nauka, Moscow

    Google Scholar 

  135. Vodokhranilischa i ikh vozdeistvie na okruzhayuschuyu sredu (1986) (Reservoirs and their influence on environment). Nauka, Moscow

    Google Scholar 

  136. Volkova NS (1980) Komponentny sostav nekotorykh diatomovykh vodorosley i ikh rol v formirovanii zapakhov vody (The component composition of some diatomic algae and their role in water odour formation. Dissertation, Taras Shevchenko National University of Kiev

    Google Scholar 

  137. Wiedow MA, Kneip TJ, Garte SJ (1982) Cadmium-binding proteins from blue crabs (Callinectes sapidus) environmentally exposed to cadmium. Environ Res 28(1):164–170

    Article  CAS  Google Scholar 

  138. Zhukinsky VN, Zhuravleva LA, Ivanov AI et al (1989) Dneprovsko-Bugskaya estuarnaya ekosistema (The Dnieper-Bug estuarial ecosystem). Nauk dumka, Kyiv

    Google Scholar 

  139. Zhulidov AV (1988) Fiziko-khimicheskoe i khimicheskoe sostoyanie metallov v prirodnykh vodakh: toksichnost dlya presnovodnykh organizmov (Physico-chemical and chemical condition of metals in natural water: toxicity for fresh-water organisms). Ecological regulation and modelling anthropogenic influence on water ecosystem, vol 1. Hydrometeoizdat, Leningrad, pp 78–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Osadchyy .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N., Nabyvanets, Y. (2016). Biological Processes. Effects of Hydrobionts on Surface Water Quality. In: Processes Determining Surface Water Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-42159-9_4

Download citation

Publish with us

Policies and ethics