Skip to main content

Physico-Chemical Processes

  • Chapter
  • First Online:
Processes Determining Surface Water Chemistry

Abstract

Main physico-chemical processes regarding to surface water are summarized and discussed in this chapter in details focusing on acid-base balance; dissociation of acids and bases; hydrolysis of metal ions, complexation processes with inorganic and organic ligands; processes of sorption-desorption in “water-particulates – bottom sediments” system. Theoretical considerations illustrated with respective formulas and graphs are supplemented with extensive field data and results of computations. Chapter can serve as a valuable source of reference information in the field of natural water chemistry and water quality assessment from the point of view of chemical substances transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Influence of complexation processes on metals hydroxides hydrolysis and solubility is considered in Sects. 3.3.3 and 3.5.3.

References

  1. Alekin OA (1970) Osnovy gidrokhimii (Principles of hydrochemistry). Hydrometeoizdat, Leningrad

    Google Scholar 

  2. Baes ICF, Mesmer RE (1986) The hydrolysis of cationis. Willey, New York

    Google Scholar 

  3. Driver J (1985) Geokhimiya prirodnykh vod (Natural water geochemistry). Mir. Moscow

    Google Scholar 

  4. Gorev LN (1996) Osnovy modelyuvannya v gidroekologii (Fundamentals of modeling in hydroecology). Lyibid, Kiev

    Google Scholar 

  5. Gorev LN, Peleshenko VI (1979) Hydrochimicheskoe ravnovesie (Hydrochemical balances). KGU Press, Kiev

    Google Scholar 

  6. Gorev LN, Peleshenko VI (1985) Metodika gidrokhimicheskikh issledovaniy (Hydrochemical survey technique). Vyischa shcola, Kyiv

    Google Scholar 

  7. Intskirveli LN (1975) Issledovanie i opredelenie form zheleza v pryrodnykh vodakh (The study and determination of iron forms in natural water). Dissertation. Vernadsky Institute of Geochemistry and Analytical chemistry of Russian Academy of Sciences

    Google Scholar 

  8. Khilchevsky V, Osadchy V, Kurylo S (2012) Osnovy hydrokhimii (Principles of hydrochemistry). Nika-Center, Kyiv

    Google Scholar 

  9. Kraynov SR, Shvets VM (1992) Gidrogeokhimiya (Hydrogeochemistry). Nedra, Moscow

    Google Scholar 

  10. Larson TE, Buswell AM (1942) Calcium Carbonate Saturation Index and Alralinity interpretation. J Am Water Work Assoc 34(11):1667–1684

    CAS  Google Scholar 

  11. Linnik PN (2003) Complexation as the worst important factor in the fate and transport of heavy metals in the Dnieper Water bodies. Anal Bional Crem 37:405–412

    Google Scholar 

  12. Linnik PN, Nabivanets BI (1986) Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Metal migration forms in fresh surface water). Hydromteoizdat, Leningrad

    Google Scholar 

  13. Linnik PN, Vasilchuk TA, Linnik RP, Ignatenko II (2007) Sosuschestvuyuschie formy tyazhyolykh metallov v poverkhnostnykh vodakh Ukrainy i rol organicheskikh veschestv v ikh migratsii (Coexisting heavy metal forms in surface water of Ukraine and the role of organic substances in their migration. Methods and objects of chemical analysis), vol 2, no 2, pp 130–145

    Google Scholar 

  14. Loginov LF (1992) Rol guminovykh kislot v formirovanii okislitelno-vosstanovitelnykh usloviy v prirodnykh protsessakh (The role of humic acids in the redox condition formation in natural processes). Soil Sci 1:72–75

    Google Scholar 

  15. Lure YuYu (1979) Spravochnik po analiticheskoy khimii (The handbook of analytical chemistry). Chemistry. Moscow

    Google Scholar 

  16. Morgan II (1967) Chemical equilibrium and kinetic properties of manganese in natural waters. In: Principles and applications of water chemistry. New York

    Google Scholar 

  17. Nabivanets BY, Kalabina LV (1977) Novy metod issledovaniya protsessov kompleleksoobrazovaniya ionov metallov v prirodnykh vodakh (The new method of study of metal ion complexation processes in natural water). Vestnik of Kiev polytech. in-te. Ser Chem Mach Technol 14:90–94

    CAS  Google Scholar 

  18. Nabivanets BY, Linnik PN (1978) Metodika issledovaniya kompleksoobrazovahiya margantsa v prirodnykh vodakh (The survey technique of manganese complexation in natural water). Water conservancy problems. Kharkov. 9:23–29

    Google Scholar 

  19. Nabivanets BY, Osadchy VI, Osadcha NM, Nabivanets YuB (2007) Analitychna khimiya poverkhnevykh vod (Analytical chemistry of surface water). Nauk dumka, Kyiv

    Google Scholar 

  20. Nazarenko VA, Antonovich VP, Nevskaya EM (1979) Gidroliz ionov metallov v razbavlrnnykh rastvorakh (Hydrolysis of metal ions in dilute solutions). Atomizdat, Moscow

    Google Scholar 

  21. Nikanorov AM (1989) Gidrokhimiya (Hydrochemistry). Hydrometeoizdat, Leningrad

    Google Scholar 

  22. Orlovsky VM, Maksimovich NP, Yakimchuk LN, Golovan DI (1983) Vliyaniya povysheniy temperatury na khimichesky sostav vody v usloviyakh modelirovaniya (Rising temperature impacts on chemical water composition in modeling conditions). Hydrochem Works Probl Chem Study Methods 88:103–109

    Google Scholar 

  23. Osadchy V, Osadcha N, Nabyvanets Yu (2003) Modelling of trace metal migration forms in water of the Dnieper reservoirs). Ekologija Vilnous 2:63–67

    Google Scholar 

  24. Osadchy VI, Krinichny VV, Osadcha NM (1998) Formy migratsii vazhkykh metaliv. rozchinenykh u void Dniprovskykh vodoskhovysch (Patterns of migration of heavy metals dissolved in water of the Dnieper reservoirs). Collect Stud UkrNDGMI 246:105–119

    Google Scholar 

  25. Osadchy VI, Nabivanets BY, Osadcha NM, Nabivanets YuB (2008) Gidrokhimichny dovidnyk (Hydrochemical handbook). Nika Centre. Kyiv

    Google Scholar 

  26. Osadchy VI, Peleshenko VI, Savitsky VN, Kirnichny VV, GrebenVV, Godun OS (1993) Raspredelenie tyazhyolykh metallov v vode. vzveshennykh veschestvakh i donnykh otlozheniyakh Dunaya (Heavy metal distribution in the water. Suspended substances and bottom sediments of the Danube). Water Resour 20(4):445–461

    Google Scholar 

  27. Osadchy VI, Voitsehovich OV, Milyukin MV et al (1997) Otsinka suchasnogo rivnya khimichnogo zabrudnennya vody ta donnykh vidkladiv dniprovskikh vodoskhovysch (Modern level assessment of chemical pollution of the Dnieper’s reservoir water and bottom sediments). Final scientific report on the contract with IDRC. Canada, 1995–1997. Ukr. NDGMI Derzhkomitet of Ukraine. Kyiv. Registration 93-09505-92-10-4

    Google Scholar 

  28. Pyatnitsky IV (1978) Teoreticheskie osnovy analiticheskoy khimii (Theoretical fundamentals of analytical chemistry). Vyischa shkola, Kyiv

    Google Scholar 

  29. Spravochnik khimika (Cnemist handbook) (1964) Chemistry, vol 3. Leningrad

    Google Scholar 

  30. Supatashvili GD, Maharadze GA (1988) Formy nakhozhdeniya elementov v prirodnykh vodakh i ikh zavisimost ot ionnykh potentsialov (Metal occurrence forms in natural water and their dependence on ionic potential. Marine sediment chemical analysis). Collection of studies of P.L. Shirshov Oceanology inst of AN USSR. Nauka. Moscow

    Google Scholar 

  31. Tinsli I, Senyavin MM (ed) (1982) Povedenie khimicheskikh zagryazniteley v okruzhayuschey srede (Behavior of chemical environmental pollutants). Mir. Moscow

    Google Scholar 

  32. Varshal GM, Koscheeva IYa, Sirotkina IS, Velyuhanova TK, Intskirveli LL et al (1979) Izuchenie organicheskikh veschestv poverkhnostnykh vod i ikh vzaimodeystviya s ionamy metallov (The study of surface water organic substances and their interaction with metal ions). Geochemistry 4:598–607

    Google Scholar 

  33. Varshal GM, Velyuhanova TK, Koscheeva IYa et al (1983) Izuchenie khimicheskikh form elementov v poverkhnostnykh vodakh (Chemical element form study in surface water). J Anal Chem 38(9): 1590–1600

    Google Scholar 

  34. Varshal GM, Velyuhanova TK, Koscheeva IYa et al (1988) Kompleksoobrazovanie blagorodnykh metallov s fulvokislotami prirodnykh vod i geokhemicheskaya rol etikh protsessov (Cmplexation of precious metals with natural water fulvic acids and the geochemical role of these processes). Collection of sci. works of GEOChI AN USSR Analytical chemistry of rare elrments. Nauka. Moscow, pp 112–146

    Google Scholar 

  35. Volkov II (1975) Khimicheskie elementy v rechnom stoke i formy ikh postupleniya v more (na primere rek Chernomorskogo basseina) (River runoff chemical elements and their forms of input into the sea (the case of the Black Sea basin). The problems of lithology and geochemistry of sedimentary rocks and ores. Nauka. Moscow, pp 85–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Osadchyy .

Addendum

Addendum

Table 3.18 Ionic activity coefficients of inorganic compounds most common in natural waters at different values of ionic strength
Table 3.19 H + ions activity coefficients at different ionic strength values
Table 3.20 НСО ¯3 ions activity coefficients at different ionic strength values
Table 3.21 Ionic activity coefficients of some organic compounds most common in natural waters at different of ionic strength values
Table 3.22 Ionic product of water at different temperatures КH 2 O = aH + aOH¯ = [H +] [OH¯] f H + f OH¯; aH += aOH  = \( \sqrt {K_{{H_{2} O}} } \)
Table 3.23 Solubility product of slightly soluble compounds (t = 25 °C)a
Table 3.24 Standard redox potentials Е0 of some systems characteristic of natural waters (t = 25 °C)
Table 3.25 Dissociation constants of acids most common in natural waters (t = 25 °C)a
Table 3.26 Amino acids dissociation constants
Table 3.27 Dissociation constants of bases most common in natural waters (t = 25 °C)
Table 3.28 Humic and fulvic acid dissociation constants
Table 3.29 Carbonic acid dissociation constants and CaCO 3 solubility product depending on water temperature
Table 3.30 Stability constants of complex compounds most common in natural waters
Table 3.31 Conditional stability constants of fulvic (FA) and humate (HA) metal complexes
Table 3.32 Dependence of normal oxygen concentration (C0) in water upon temperature

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N., Nabyvanets, Y. (2016). Physico-Chemical Processes. In: Processes Determining Surface Water Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-42159-9_3

Download citation

Publish with us

Policies and ethics